
There has been growing interest in recent
years in applying the theoretical and method-
ological tenets of Darwinian evolutionary

theory to the archaeological record (e.g., Barton
and Clark 1997; Dunnell 1980; Lipo et al. 1997,
2005; Lyman and O’Brien 1998; Neiman 1995;
O’Brien 1996; O’Brien and Lyman 2000, 2002,
2003a; Shennan 2002; Shennan and Wilkinson

2001). One of the key theoretical tenets of any the-
ory of Darwinian evolution, be it biological or cul-
tural, is inheritance: “Any variation which is not
inherited is unimportant for us” (Darwin 1859:75).
In cultural evolution (Boyd and Richerson 1985;
Cavalli-Sforza and Feldman 1981; Mesoudi et al.
2004, 2006; Richerson and Boyd 2005), inheritance
takes the form of cultural transmission, the process
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A Darwinian evolutionary approach to archaeology naturally leads to a focus on cultural transmission. Theoretical mod-
els of cultural evolution indicate that individual-level details of cultural transmission can have specific and significant
population-level effects, implying that differences in transmission may be detectable in the archaeological record. Here we
present an experimental simulation of the cultural transmission of prehistoric projectile-point technology, simulating the
two transmission modes—indirect bias and guided variation—that Bettinger and Eerkens (1999) suggested were responsi-
ble for differences in Nevada and California point-attribute correlations. Groups of participants designed “virtual projec-
tile points” and tested them in “virtual hunting environments,” with different phases of learning simulating, alternately,
indirectly biased cultural transmission and independent individual learning. As predicted, periods of cultural transmission
were associated with significantly stronger attribute correlations than were periods of individual learning. We also found
that participants who could engage in indirectly biased horizontal cultural transmission outperformed individual-learning
controls, especially when individual learning was costly and the selective environment was multimodal. The study demon-
strates that experimental simulations of cultural transmission, used alongside archaeological data, mathematical models
and computer simulations, constitute a useful tool for studying cultural change. 

Una aproximación Darwiniana a la arqueología conduce, naturalmente, hacia un enfoque en la transmisión cultural. Los mod-
elos teóricos de la evolución cultural indican que el nivel individual de la transmisión de cultura puede tener efectos especí-
ficos y significativos sobre el nivel demográfico. Esto implica que las diferencias de transmisión pueden ser detectadas en la
documentación arqueológica. Aquí presentamos una simulación experimental sobre la transmisión cultural de tecnología pre-
histórica puntas de proyectil, representando los dos modos de transmisión: tendencia indirecta y variación guiada. Ambos
modos, según Bettinger y Eerkens, fueron responsables de las diferencias en las correlaciones punto-parámetro de Nevada y
California. Grupos de participantes diseñaron “puntas virtuales de proyectil” y las probaron en “medios virtuales de cac-
ería” con diferentes fases de aprendizaje, simulando el modo de tendencia indirecta y el aprendizaje individual independiente.
Como fue previsto, los periodos de transmisión cultural fueron asociados con parámetros de correlaciones significativamente
más fuertes que los periodos de aprendizaje individual. El experimento y las subsiguientes simulaciones computarizadas agente
base, mostraron que los participantes, dedicados a la transmisión cultural horizontal de tendencia indirecta, superaron los
controles de aprendizaje individual. Este resultado se obtuvo especialmente entre los grandes grupos, cuyo aprendizaje indi-
vidual es costoso y el entorno selecto es multi-modal. El presente trabajo demuestra que las simulaciones experimentales de
transmisión cultural, usadas con modelos matemáticos y simulaciones en computadoras, constituyen una herramienta para
estudiar los cambios culturales.
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by which information (e.g., knowledge, skills, or
beliefs) is passed from individual to individual via
social learning. Consequently, evolutionary archae-
ologists have begun to seek signs of cultural trans-
mission in the archaeological record (O’Brien and
Lyman 2003b). O’Brien and Lyman (2000) and
Lipo et al. (1997) have argued that seriations con-
stitute temporal sequences of artifacts because those
artifacts are causally linked by cultural transmission
(they exhibit “heritable continuity”), while they and
others have applied phylogenetic analyses to iden-
tify artifacts that are related by cultural transmis-
sion (descent) or that represent independent
innovations in unrelated lineages (Collard et al.
2006; Lipo et al. 2005; O’Brien et al. 2001; O’Brien
and Lyman 2003a).

Although a Darwinian evolutionary approach to
archaeology naturally leads to a focus on trans-
mission, it does not necessarily follow that cultural
transmission must be identical in its details to bio-
logical inheritance; in many cases cultural trans-
mission will exhibit its own unique rules and
dynamics. These differences do not invalidate an
evolutionary approach to archaeology—all that is
required for Darwinian evolution is that transmis-
sion, however it is realized, takes place. However,
there is one general rule that archaeologists would
benefit from taking from evolutionary biology—
that the small-scale details of inheritance and selec-
tion at the individual level may have dramatic
effects at the population level. In evolutionary biol-
ogy, this link between microevolution and
macroevolution was made during the 1930s and
1940s, when the microevolutionary principles of
theoretical and experimental population genetics
were used to explain temporal and spatial
macroevolutionary patterns found by paleontolo-
gists and naturalists. Indeed, it was not until this
“Modern Synthesis” (Huxley 1942; Mayr and
Provine 1980) occurred that evolutionary biology
became the hugely successful discipline that it now
is. The same general principle—that microevolu-
tonary processes generate macroevolutionary
phenomena—also applies to cultural evolution.1

Models of cultural evolution (e.g., Boyd and Rich-
erson 1985, 2005; Cavalli-Sforza and Feldman
1981) have highlighted how the details of cultural
transmission at the individual level frequently have
important effects at the population level. For exam-
ple, Boyd and Richerson (1985) proposed a num-

ber of biases in cultural transmission, such as
“guided variation,” in which individuals acquire a
cultural trait, then modify it through individual trial
and error; “conformist bias,” in which the most
popular variant in a population is disproportionately
more likely to be adopted; and “indirect bias,” in
which traits exhibited by successful or high-status
individuals are preferentially adopted. These biases
each generate specific population-level effects
(Boyd and Richerson 1985), such as widespread
cooperation generated by cultural group selection
(conformist bias) or runaway prestige markers
(indirect bias). This theoretical work has important
implications for archaeology. Given that archaeol-
ogists predominantly study large samples of
population-level data that were generated over
extended periods of time (i.e., cultural macroevo-
lution: Mesoudi et al. 2006), it follows that this
population-level data will, in many cases, be
affected by and structured according to individual-
level details of cultural transmission (i.e., cultural
microevolution: Mesoudi et al. 2006). By making
explicit assumptions and predictions regarding cul-
tural transmission, archaeologists can gain better
insight into past cultural change, and better explain
specific patterns and trends in the archaeological
record. 

Some archaeologists have already taken advan-
tage of cultural transmission theory to help explain
certain patterns in the archaeological record. One
example is Bettinger and Eerkens’s (1997, 1999)
study of Great Basin projectile points manufac-
tured around A.D. 300–600 following the replace-
ment of the atlatl with the bow and arrow. Bettinger
and Eerkens (1999) observed that points found in
two regions of the Great Basin differ in the degree
to which their attributes, such as weight, width,
and length, correlate with each other (Table 1).
They attribute these differences to the manner in
which prehistoric people of the two regions
acquired and transmitted projectile-point technol-
ogy. Specifically, the attributes of points found in
eastern California were found to be poorly corre-
lated with each other, which Bettinger and Eerkens
(1999) argued was because point designs in this
region originally spread as a result of guided vari-
ation. Hence, each attribute was subject to separate
individual trial-and-error experimentation, causing
them to vary independently. In contrast, projectile
points of the same material and from around the
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same period found in central Nevada featured uni-
form designs with highly correlated attributes. Bet-
tinger and Eerkens (1999) argued that points in this
region originally spread as a result of indirect bias,
with individuals copying wholesale the design of
a single successful model.2 Hence, differences at
the individual level (guided variation vs. indirect
bias) can be argued to have generated differences
at the population level (uncorrelated attributes vs.
correlated attributes).

One limitation inherent within archaeology is
that we usually have access only to population-
level historical data. The details of cultural trans-
mission at the level of the individual—who copies
what from whom, and how—can in most cases
only be inferred from these archaeological data, as
Bettinger and Eerkens (1999) did, and seldom
directly observed or measured. Mathematical sim-
ulations offer one means of addressing this prob-
lem, with the results of simple models of cultural
transmission matched to archaeological data (e.g.,
Eerkens et al. 2005). Mathematical models, how-
ever, are only as good as their assumptions, in this
case assumptions regarding people’s propensities
to learn socially rather than individually, to con-
form, to copy the most successful individual, and
so on. We also need experimental data from psy-
chology in order to verify the assumptions and find-
ings of theoretical models. Although Boyd and

Richerson (1985) attempted to ground their mod-
els in empirical data from psychology, sociology,
and anthropology, as they themselves acknowl-
edged (Boyd and Richerson 1985:296), many of
these data were inadequate and/or not collected
with their specific hypotheses in mind. Indeed, the
mismatch between the recent findings of experi-
mental economics (e.g., Henrich et al. 2004) and
the assumptions of traditional theoretical econom-
ics illustrates the dangers of failing to test theoret-
ical models with experimental data. Experimental
methods also allow the manipulation of variables,
access to complete, uninterrupted data, and the
comparison of fitness at different points in time, all
of which are impractical or impossible with archae-
ological methods, making experiments a poten-
tially valuable tool for understanding
archaeological phenomena (Mesoudi 2008).
Indeed, experimental laboratory studies have made
major contributions to evolutionary biology by
uncovering the fundamental principles of biologi-
cal inheritance and selection, from Mendel’s (1866)
pea-plant studies, which established that inheri-
tance is particulate, to Morgan’s (1932) and
Dobzhansky’s (1937) groundbreaking experiments
of selection and mutation in Drosophila, through
to present-day experimental population genetics.
Recent studies have experimentally simulated long-
term evolution using microorganisms (Elena and
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Table 1. Correlation Coefficients for Great Basin Point Attributes, by Region (Nevada or California)

Distal Proximal 
Axial Max. Basal Neck shoulder shoulder 
length width width width Thickness angle angle Weight

Max. length NV 1.00 .58* .48* .51 .51* -.19 -.34 .86
CA 1.00 .24 .07 .21 .15 -.24 -.24 .76

Axial length NV .59 .49* .51* .49* -.18 -.33 .86
CA .22 .04 .16 .14 -.24 -.27 .74

Max. width NV .44 .72 .12 -.48 -.53* .62
CA .54 .69 .26 -.47 -.08 .71

Basal width NV .71 .21 .11 .26 .80*
CA .78 .05 -.06 .31 .14

Neck width NV .23 -.15 -.15 .61
CA .11 -.06 .15 .40

Thickness NV .14 -.02 .70
CA .03 -.02 .57

Distal shoulder NV .53* -.12
angle CA .16 -.38
Proximal shoulder NV -.21

angle CA -.01

Note: Correlations (Pearson’s r) from Bettinger and Eerkens (1999:237). 
NV = Nevada sample, CA = California sample.
*Significantly stronger correlation in the Nevada sample than in the California sample.
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Lenski 2003; Lenski and Travisano 1994), tackling
issues regarding macroevolution that previously
only the fossil record and/or theoretical models
could address, such as punctuated equilibria
(Lenski and Travisano 1994), long-term adapta-
tion in multimodal fitness landscapes (Colegrave
and Buckling 2005; Elena and Lenski 2003), and
the evolution of sexual reproduction (Colegrave
2002). Psychological experiments that simulate dif-
ferent modes of cultural transmission have the
potential to be similarly useful in explicating past
cultural evolution (Mesoudi 2007, 2008). Although
experimental studies are common in archaeology,
often specifically regarding projectile points and
related projectile technology (e.g., Cheshier and
Kelly 2006; Flenniken and Raymond 1986; Knecht
1997; Odell and Cowan 1986; Schiffer and Skibo
1987), these studies deal exclusively with the phys-
ical properties of different projectile technologies
by simulating their use under different conditions.
To our knowledge, no experimental studies have
attempted to simulate the cultural transmission of
prehistoric artifacts, which the models of Boyd and
Richerson (1985) and others, and the analyses of
Bettinger and Eerkens (1997, 1999), suggest played
an important role in generating systematic patterns
in the archaeological record. 

Although not specifically addressing archaeo-
logical issues, there have recently been attempts to
experimentally test the assumptions and findings
of the mathematical models of cultural transmis-
sion mentioned above. McElreath et al. (2005) had
groups of 6–10 participants repeatedly play a
computer-based task (planting one of two crops,
one of which gave a higher yield), either with no
social learning (an individual-learning baseline), or
with the opportunity to view the previous choice
of one randomly selected group member (allowing
simple social learning), or with the opportunity to
view the previous choices of all group members
(allowing conformity). Although some participants
did engage in social learning, most did not, even
when mathematical models predicted that social
learning would have been optimal. Of those who
did, social information was more likely to be used
when individual learning was relatively inaccurate
and the environment (which crop was optimal) did
not change, in line with theoretical predictions.
Although models indicated that conformity was
the optimal strategy under all conditions, it was

used only when the environment fluctuated. In
another experiment, Kameda and Nakanishi (2002)
explored the adaptiveness of individual and social
learning within groups of six participants repeat-
edly playing a simple computer-based task (locat-
ing a rabbit in one of two possible locations).
Participants had the opportunity to engage in either
individual learning at a cost or free social learning,
in which the past choices of three randomly selected
group members could be seen. In accordance with
the predictions of the authors’mathematical simu-
lations, polymorphic equilibria emerged in which
individual learners (“information producers”) and
social learners (“information scroungers”) coex-
isted. Increasing the cost of individual learning
increased the frequency of social learning. A
follow-up study (Kameda and Nakanishi 2003)
found that groups in which social learning was pos-
sible outperformed groups in which only individ-
ual learning was allowed, suggesting that social
learning is adaptive when individuals can selec-
tively switch between individual and social learn-
ing. 

The aim of our study was to test Bettinger and
Eerkens’s (1999) hypothesis that the different pat-
terns of projectile-point variation observed in the
Great Basin are the result of different cultural trans-
mission processes—guided variation and indirect
bias—by experimentally simulating those cultural-
transmission processes in the laboratory using sim-
ilar experimental methods to those just outlined.
Participants played a simple computer game in
which they tested “virtual projectile points” in a
series of “virtual hunting environments.” Learning
was divided into separate phases (Table 2). In Phase
1, participants were given a list of players from a
previous group together with each previous player’s
overall success rate, and they were asked to copy
the point design of one of those players. Here we
predict that participants will predominantly choose
to copy the most successful model (exhibit indirect
bias), causing the attributes (e.g., length and width)
of the points to correlate, as in Bettinger and
Eerkens’s (1999) central-Nevada data. In Phase 2,
participants were allowed to experiment with their
points by changing their attributes, with no access
to any other player’s design (simulating guided
variation). Here we predict that the correlations
between the attributes will decrease, as in Bettinger
and Eerkens’s (1999) eastern-California data. If the
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experimental data generated by our participants
match up with the archaeological data of Bettinger
and Eerkens (1999), then we can be more confi-
dent in their claims. If the historical and experi-
mental data sets do not match, then identifying
exactly why they do not match would nevertheless
be a productive exercise, either in calling Bettinger
and Eerkens’s (1999) hypothesis or methods into
question or in identifying exactly what is missing
from the experimental simulation. 

Bettinger and Eerkens (1999) do not specify
why point designs would diverge during the period
of individual learning. It may have been that designs
were stylistic and diverged through a process of
drift. Here we test an alternative hypothesis that
point designs were functional—that the values of
attributes such as length or width contributed to a
point’s efficacy in hunting. This is consistent with
experimental studies such as that of Cheshier and
Kelly (2006), who found that point attributes (e.g.,
the thickness:length ratio) affect performance char-
acteristics of the point when fired. If point designs
are functional, then there would be no reason to
modify a point inherited from a successful model
unless the selective environment has changed.
Hence, in Phase 1 the participants experienced dif-
ferent selective “environments” than those of the
models. The point inherited from the most suc-
cessful model in the previous group was therefore
not necessarily the best point in the participant’s
environment, providing an incentive for the par-
ticipant to experiment with the design. There were
three different environments (E1, E2, and E3), all
different from the environment of the models (E0),
so we predict that during Phase 2 points will
diverge, and correlations between attributes will
decrease, as a result of adapting to these different
environments. A second possible reason for diver-

gence during individual trial and error is that points
in the same environment may have had different
locally optimal designs as a result of tradeoffs
between competing uses or requirements. Hence,
three continuous attributes (Length, Width, and
Thickness) had bimodal fitness functions such as
the ones shown in Figure 1, featuring a global opti-
mum (giving the maximum possible score from that
attribute) and a local optimum (giving two-thirds
the payoff of the global optimum). Any minor devi-
ation away from either of these two optima reduced
the participant’s overall score, which was the sum
of each attribute’s fitness. Combining three such
bimodal fitness functions creates a multimodal
“adaptive landscape.” This is a concept commonly
used in evolutionary biology (Arnold et al. 2001;
Simpson 1944; Wright 1932) to represent the
design space of all possible combinations of mul-
tiple phenotypic characters, where the height of the
landscape represents fitness. Similarly, our adap-
tive landscape represents all possible point designs,
or all possible combinations of all values of Length,
Width, and Thickness, where the height of the land-
scape represents the payoff to the participant of
that point design. So, for example, a point speci-
fied by values of Length,Width, and Thickness that
are all at global optima would be found at the high-
est peak in the landscape; a point specified by one
global and two local optima would be at a slightly
lower peak; and a point at all three local optima
would be found at the lowest peak (there are eight
peaks in total). Hence, diversity will be produced
and maintained during Phase 2 when participants
converge on different locally optimal peaks. Two
other attributes, Shape and Color, were discrete.
Shape had a linear fitness function (Figure 1),
whereas Color was neutral and did not affect feed-
back.
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Table 2. The Three Learning Phases and Associated Predictions.

Phase 1
Hunt 1
Oblique Cultural Transmission
Description: Participants saw a list

of six previous participants along
with those participants’ final
scores.  Participants selected one of
the previous participants and
copied their point design.  No
modification was allowed.

Prediction: Strong Attribute
Correlations

Prediction: High Within-Group CV

Phase 2
Hunts 2-25
Individual Learning
Description: Participants could

modify any of the five point attrib-
utes. Participants had no access to
anyone else’s point design.

Prediction: Weak Attribute
Correlations

Prediction: Low Within-Group CV

Phase 3
Hunts 26-30
Horizontal Cultural Transmission
Description: Participants could modify

their point designs as in Phase 2.
Participants could additionally see the
cumulative scores of every other partici-
pant in their group, and could view the
point design of one of those other partici-
pants.

Prediction: Strong Attribute Correlations

Prediction: High Within-Group CV
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The assumption of a multimodal adaptive land-
scape underlying point design allows us to test a
more general hypothesis regarding cultural
transmission—that indirectly biased cultural trans-
mission allows individuals to jump from locally
optimal peaks in the design space to the globally
optimal peak (or higher locally optimal peaks). Par-
ticipants relying solely on individual learning will
explore the design space by improving their scores
(moving uphill) but are likely to end at a globally
suboptimal peak. This is a common finding in
experimental studies of individual learning and
problem solving (e.g., Fu and Gray 2004, 2006).
In a sufficiently large group, however, one or more
participants might by chance reach the globally
optimal peak and outperform the other group mem-
bers. If the participants are able to engage in indi-
rectly biased cultural transmission, then they can
potentially jump from their locally optimal peak to
the globally optimal peak (or a higher locally opti-
mal peak) of the most successful individual.3 In
order to test this hypothesis, in Phase 3 participants
were allowed to copy the designs of their fellow
group members (given information about those

members’ success in the task). This potentially
allows participants to jump from the locally opti-
mal peak that they found during Phase 2 to the
globally optimal peak (or the highest peak found
by the participants in that group). We therefore pre-
dict that participants in groups will outperform indi-
vidual controls during this phase of learning. We
also predict that this indirectly biased horizontal
cultural transmission in Phase 3 will have the same
effect as indirectly biased oblique cultural trans-
mission in Phase 1, i.e., increase the correlations
between point attributes. Indeed, this might con-
stitute a stronger test of Bettinger and Eerkens’s
hypothesis because in Phase 3, unlike in Phase 1,
participants were not forced to copy the point
design of a model. 

Several other issues were also investigated. In
the third of three seasons of hunting, participants
had to pay a cost to modify their point designs.
Costly individual learning is predicted to increase
the frequency and adaptiveness of social learning
(Boyd and Richerson 1989, 1995), consistent with
previous experiments (Kameda and Nakanishi
2002; McElreath et al. 2005). This may, therefore,
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Figure 1. Example fitness distributions for the functional point attributes.
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provide an explanation for why prehistoric hunters
in Nevada and California differed in their reliance
on social learning. We are also interested in com-
paring variation in point designs between and
within different environments before and after hor-
izontal cultural transmission, predicting that indi-
rectly biased within-group horizontal cultural
transmission will reduce point variation within
groups while not affecting between-group varia-
tion. That is, if every member of a group copies the
single most-successful individual in their group,
then everyone in that group will soon have similar
point designs, resulting in low within-group vari-
ation. If cultural transmission is only permitted
within groups (i.e., people cannot copy individu-
als from other groups), and the most successful
individuals in each group have different point
designs (due to the different environments), then
each group will converge on a different design,
thereby maintaining between-group variation. This
constitutes a test of Eerkens and Lipo’s (2005)
recent suggestion that changes in variation can be
used to identify different forms of cultural trans-
mission in archaeological data,4 as well as poten-
tially provide the conditions for cultural group
selection (Boyd and Richerson 1985; Richerson
and Boyd 2005). 

Experimental Methods

Participants

Eighty-one students at the University of Mis-
souri–Columbia participated in the study (54.3 per-
cent female; mean age = 23.15, sd = 7.08). Each
participant was paid $8 for completing the approx-
imately 45-minute experiment. Participants were
recruited through advertisements in the student
newspaper, fliers posted around campus, and post-
ings on a University of Missouri email bulletin
board. Participants were unaware of archaeologi-
cal work regarding projectile points in order to pre-
vent prior knowledge interfering with point design.
Six participants completed the pretest phase. The
remaining participants (n = 75) took part either on
their own (n = 24) or in groups of two (n = 6), three
(n = 9), four (n = 8), five (n = 10), or six (n = 18).
Participants/groups were randomly assigned to
Environment 1 (n = 27), Environment 2 (n = 19),
or Environment 3 (n = 29).

Task and Design

The experiment consisted of an interactive com-
puter game programmed in Borland C++ Builder
6.0 and implemented on a local network of six
desktop PCs. Participants designed a series of “vir-
tual projectile points.” Each participant completed
three seasons of hunting, with each season con-
sisting of 30 trials, or “hunts.” One hunt represents
one opportunity to modify the point design and to
test it in the virtual hunting environment. A
projectile-point design was represented by five val-
ues, each constituting a different attribute. Length,
Width, and Thickness were continuous variables of
arbitrary units ranging from 1 to 100. Shape and
Color were discrete variables, each taking one of
four values (“Shape 1,” “Shape 2,” “Shape 3,” or
“Shape 4,” and “White,” “Gray,” “Fawn” or
“Orange,” respectively). Generic shape terms were
used because participants were not familiar with
technical terms such as “corner notched” or “lance-
olate.” The values of these five attributes were used
to calculate the “fitness” of the design, in terms of
the number of calories (from 1–1000) it yielded
during a hunt (see below for fitness equations).
“Fitness” here is intended as a loose term indicat-
ing the functional efficacy of a particular design,
although given that projectile technology was orig-
inally used to obtain food and can be seen as part
of an individual’s “extended phenotype” (O’Brien
and Holland 1995), fitness may also be interpreted
in a biological sense of survival and reproduction. 

Before the experimental sessions began, six par-
ticipants completed a pretest study during which
they completed one season of 30 hunts using purely
individual learning, with no access to the design of
any other participant. These six pretest participants
served as “models” for the first phase of the exper-
imental sessions. During the experimental sessions,
every participant played three hunting seasons each
comprising 30 hunts, with each season of 30 hunts
divided into three phases (Table 2).5 During the first
hunt (Phase 1), which represents oblique cultural
transmission, participants could see on the screen
a list of the six pretest participants (the models) and
each model’s final score, cumulative over the 30
hunts. The participant selected one of these mod-
els to copy, after which the model’s final point
design was copied to the experimental participant’s
screen. No modification of the point design was per-
mitted at this stage. After a model was selected, par-
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ticipants pressed the onscreen HUNT button and
received feedback in terms of calories (1–1000). 

Phase 2 consisted of 24 rounds of individual
learning (simulating guided variation), in which
participants could modify one or more character-
istics of their points. During Phase 2 there was no
opportunity to view or copy the point of any other
participant, either from the pretest or the immedi-
ate group. Participants could change the values for
one, more than one, or none of the five point attrib-
utes and at any time press the onscreen VIEW but-
ton, whereupon an image of the point with the
appropriate length, color, and so on was displayed
on the screen. When participants were happy with
their designs, they pressed the onscreen HUNT
button, whereupon feedback was given in terms of
calories, as in Phase 1. During each hunt, partici-
pants could see their score from the previous hunt,
their rank within the group (for participants in
groups of four or more), their cumulative score (the
running total of all hunt scores up to that hunt), and
the number of hunts left in the season.

The final five hunts comprised Phase 3, repre-
senting horizontal cultural transmission, in which
participants could select one of the other members
of their group and view their point characteristics.
Next to each group member’s name was his or her
cumulative score, allowing the participant to select
the most successful group member. If the partici-
pant chose to view another participant’s values,
then those values appeared in red next to the par-
ticipant’s own values, which did not automatically
change. At all times participants could modify their
own values, as in Phase 2, whether they viewed
another participant’s values or not. If they did, par-
ticipants were free to change one or more of their
own values to match the other participant’s values
or ignore the other participant’s values. Feedback
was the same as for Phase 2.

Each participant played three seasons each com-
prising 30 hunts, with each season divided into the
three phases of learning, except for the six pretest
models (see above) and all participants in groups
of size 1–3, who did not play Phase 3 as there were
not enough other group members present. For these
participants Phase 2 lasted from Hunt 2 to Hunt 30.
For all participants, the cumulative score was reset
to zero at the start of each season, and each season
featured different optimal values, which consti-
tuted the selective environment. Optimal values

stayed constant within seasons. There were three
different sets of optimal values (three different envi-
ronments), to which participants were assigned at
random. All participants in the same group expe-
rienced the same environment. During Season 3,
participants additionally had to pay a cost to mod-
ify their point designs. During each hunt of Season
3 (except Hunt 1), participants could either keep
the same values from the previous hunt at no cost
or choose to modify their values, whereupon 250
calories were deducted from their cumulative score.
Viewing another participant’s point design in Phase
3 entailed no cost, but choosing to modify that point
did entail the cost. 

Procedure

Participants completed the experiment in groups of
1–6, depending on availability. Each participant sat
at a separate computer terminal. Dividers ensured
that participants could not see the screen of adja-
cent participants. On-screen instructions explained
the experimental design and provided instructions.
Participants were instructed not to communicate
with each other except by means of the program,
or to write anything down. 

Fitness Calculations

Following each hunt, participants were given feed-
back in terms of the number of calories (1–1,000)
that their current point design yielded. This feed-
back was calculated by comparing the participants’
values of each of their point attributes with corre-
sponding hidden optimal values. The closer a par-
ticipant’s values of each attribute were to the
corresponding optimal value for that attribute, the
higher the overall feedback score. Example opti-
mal fitness functions are shown in Figure 1. Each
environment (E0, E1, E2, and E3) had three dif-
ferent sets of optimal values, one for each season
of hunting. These optimal values stayed constant
during each season and changed at the beginning
of each season. The overall feedback is denoted
here by W (0 < W ≤1,000) and was calculated from
four of the five attributes, Length, Width, Thick-
ness, and Shape (color did not affect point perfor-
mance and therefore constitutes a neutral trait). The
four functional attributes contributed independently
to the overall fitness of a point design, W, differ-
entially weighted according to equation (1):
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W = 1000 (.275 Wl + .25 Ww + .35 Wt + .125 Ws) (1)

where subscripts x, w, t, and s denote the attributes
Length,Weight,Thickness, and Shape respectively
(x is used for Length instead of lower-case “l” to
avoid confusion with numeral “1”). Hence, Wl (0
< Wl < 1), Ww (0 < Ww < 1), Wt (0 < Wt < 1), and
Ws (0 < Ws < 1) are the separate fitness contribu-
tions of Length, Width, Thickness, and Shape,
respectively. Note that participants received only
the single overall number, W, and were not
informed of the separate contributions to this num-
ber from each attribute. Equation 1 states that
Thickness has the greatest effect on the overall
feedback, followed by Weight, then Length, and
finally Shape. We can therefore predict that the
optimal strategy is to modify attributes in this order
of priority.

The three continuous variables, Length, Width,
and Thickness, each had bimodal fitness distribu-
tions. Fitness was calculated from two normally
distributed functions for each attribute, W1 and W2,
where W1 is centered around a global optimum
value, O1 (10 < O1 < 90), and W2 is centered around
a local optimum value O2 (10 < O2 < 90). If the par-
ticipant’s attribute value is at the global optimum,
O1, then the participant receives the maximum pos-
sible fitness for that attribute (Wl = 1, Ww = 1, or
Wt = 1). If the participant’s value is at the local opti-
mum, O2, then the participant receives two-thirds
of the fitness of the global optimum (Wl = .66, Ww

= .66, or Wt = .66). Any deviation from either of
these optima decreases the feedback from that
attributes’ fitness and hence the overall feedback,
W, according to equation (1). Equations (2) and (3)
give functions W1 and W2 for Length (hence Wl1

and Wl2), adapted from Boyd and Richerson
(1985:100):

Wl1 (Xl,Ol1) = P1 exp [–(Xl/100 – Ol1/100)2 / (2s)] (2)

Wl2 (Xl,Ol2) = P2 exp [–(Xl/100– Ol2/100)2 / (2s)] (3)

where Xl is the participant’s Length value; Ol1 and
Ol2 are the specific values of the two optima in
terms of the arbitrary Length units; P1 and P2 are
the maximum fitnesses given by the global and
local optima, respectively; and s is a measure of the
intensity of selection (the shallowness of the curve
in Figure 1). In this study P1, P2, and s were con-

stant at P1 = 1, P2 = .66, s = .025. The overall Wl is
then given by the larger of the two values, Wl1 and
Wl2 (equation 4):

(4)

Equivalent variables for Weight and Thickness
can be substituted into these equations to give sim-
ilar fitness functions but at different optimal val-
ues, as shown in Figure 1. The discrete attribute,
Shape, could take one of four values (S1, S2, S3 or
S4). These shapes were assigned a rank order that
determined their fitness payoff, Ws (Figure 1). The
first shape gave the maximum Ws = 1, the second
gave Ws = .9, the third Ws = .66, and the last Ws =
.33. So, for example, if the rank order was {S3, S2,
S4, S1}, then a choice of S3 gave Ws = 1; S2 gave
Ws = .9; S3 gave Ws = .66; and S1 gave Ws = .33.
Finally, the feedback shown to the participants was
subject to random error (as in McElreath et al.
2005), intended to represent random factors such
as weather fluctuation or prey availability that affect
feedback independently of point design. The fitness
shown to the participants, W ' (0 < W ' ≤ 1,000), was
randomly taken from a normal distribution, with
mean W and standard deviation E. Parameter E
therefore represents the magnitude of the error,
here constant at E = 5.

Statistical Analyses

As a result of the bimodal fitness functions, many
of the dependent variables exhibited a bimodal
rather than a normal distribution, so nonparamet-
ric correlation statistics are used to compare the
point attributes. Correlations between two quanti-
tative variables (Length, Width, Thickness) are
Spearman’s rs; correlations between one quantita-
tive (Length, Width, Thickness) and one nominal
(Shape, Color) variable are Eta; correlations
between two nominal variables (Shape and Color)
are Cramer’s V. Significance of Eta was derived
using Kruskal-Wallis tests. Regression models
were not fitted because of nonindependence of data;
each participant’s attribute or score value is depen-
dent on both that participant’s previous values and,
during Phase 3, on the values of other participants
in the group. Dunn and Clark’s z-test was used to
test the hypotheses that correlations between the

W
W W W

W W Wλ
λ λ λ

λ λ λ
= >

>
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same attributes changed significantly between dif-
ferent experimental phases, as specified by Chen
and Popovich (2002:24–25). 

Results

The following subsections address, in turn, each
main research question addressed in the experi-
mental simulation. Each subsection begins with
a one-line summary of our findings for non-
statistically inclined readers, followed by details
of the statistical analyses used to support that con-
clusion.

Did Participants Copy the Most Successful 
Individuals in Phase 1?

Summary:Yes, the majority of participants in Phase
1 chose to copy the single most-successful model,
consistent with the operation of indirectly biased
oblique cultural transmission. 

Details: In Phase 1 (Hunt 1) participants were
presented with a list of the six pretest models and
the models’ final scores, and they could select one
of those six models to copy (simulating oblique cul-
tural transmission). We predicted that participants
would choose to copy the model with the highest
score—they would exhibit indirect bias. In all three
seasons the majority (but by no means all) of par-
ticipants acted in accordance with this prediction:
In Season 1, 66/75 (88.0 percent) of participants
chose the most successful model to copy; in Sea-
son 2, 57/75 (76.0 percent); and in Season 3, 59/75
(78.7 percent). These choices significantly differed
from random according to chi-square tests (Season
1: x2(5) = 275.96, p < .001; Season 2: x2(5) =
193.08, p < .001; Season 3: x2(5) = 212.12,
p < .001). 

Were the Point Attributes More Highly 
Correlated Following Phase 1 (Indirect Bias)
Than Following Phase 2 (Guided Variation)?

Summary: Yes, point attributes were more highly
correlated following Phase 1 than following Phase
2, consistent with the operation of indirectly biased
oblique cultural transmission, and re-creating the
patterns documented by Bettinger and Eerkens
(1999) for prehistoric Great Basin points.

Details: As argued by Bettinger and Eerkens
(1999), indirectly biased cultural transmission
should produce strong and significant correlations

between point attributes. Hence, we should see
stronger correlations following Phase 1 (Hunt 1),
having established above that the majority of par-
ticipants were indeed copying the single-most suc-
cessful model, than following Phase 2 (Hunt 25),
after 24 hunts of individual trial and error learning
in different environments and in a multimodal adap-
tive landscape. Table 3 shows the 10 correlations
between the point attributes at these two hunts (the
upper two correlations in each cell) separately for
each season. At Hunt 1, for Season 1 all 10 corre-
lations were highly significant at p < .001; for Sea-
son 2, eight of the 10 were significant at p < .001,
one at p < .01, and one at p < .05; for Season 3 seven
were significant at p < .001, one at p < .01, and the
other two were not significant (p > .05). At Hunt
25, only two correlations were significant at p < .05
for Season 1, one was significant for Season 2, and
five were significant for Season 3. However, given
that we are performing multiple simultaneous sta-
tistical tests, we must adjust our significance level
to reflect the increased probability of false positives.
Adopting a Bonferroni-corrected significance level
for 10 comparisons of a* = a / N = .05 / 10 = .005
(where N = number of comparisons) means that
none of the Hunt 25 correlations are significant,
whereas the majority of the Hunt 1 correlations
(25/30) remain significant.

We can also test whether the correlations com-
pare in the directions predicted, that is, whether
corrH1 > corrH25. From Table 3, 10/10 comparisons
from Season 1, 10/10 from Season 2, and 8/10 from
Season 3 fulfill this relationship. As shown in Table
4, z-tests showed that every attribute comparison
for every season was correlated significantly less
strongly at Hunt 25 than at Hunt 1, as predicted
(except for two anomalous comparisons in Season
3,Thickness x Shape and Thickness x Width, which
were significant in the opposite direction). 

Was the Phase 2 Guided-Variation Divergence
a Result of the Different Environments or of the
Multimodal Adaptive Landscape?

Summary: The multimodal adaptive landscape at
least partly caused the divergence due to guided
variation/individual learning during Phase 2.

Details: The divergence resulting from individ-
ual trial-and-error learning in Phase 2, which pro-
duced low and predominantly nonsignificant
attribute correlations, can be attributed to (1) the
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fact that participants/groups were split into three
different environments (sets of optimal values),
and/or (2) the fact that those environments consti-
tuted adaptive landscapes with multiple locally
optimal fitness peaks. Although the study was not
specifically designed to address this, we can get
some idea by comparing the correlations shown in
Table 3 with their equivalent partial correlation
coefficients controlling for environment. If the low
correlations at Hunt 25 are the result of the differ-
ent environments, then removing the effect of envi-
ronment should increase the correlations. If the
multimodal adaptive landscape is responsible, then
the correlations should remain low. Partial corre-
lations support the latter, with the majority of the
correlations showing little change after removing
the effects of environment. Only two of the 30 cor-
relations changed in significance, with length x
width for Season 2 (rp = –.233, p < .05) and width
x color for Season 3 (rp = –.265, p < .05) becom-
ing significant. Overall, however, the similarly low
and predominantly non-significant partial correla-
tions suggest that the multimodal adaptive land-
scape at least partly caused the divergence.

Did Participants View the Most Successful 
Individuals’ Designs in Phase 3 (Horizontal
Cultural Transmission)?

Summary:Yes, participants during Phase 3 prefer-
entially accessed the point design of the most suc-
cessful group member, consistent with the
operation of indirectly biased horizontal cultural
transmission.

Details: During Phase 3 (Hunts 26–30), partic-
ipants in groups of 4–6 could choose to view and
copy the point design of another group member,
i.e., engage in horizontal cultural transmission. Par-
ticipants could see the other players’ cumulative
scores, and we again predicted that participants
would be more likely to view the point attributes
of the most successful group member. We excluded
from these analyses the most successful player in
each group in each season, as the most successful
player cannot copy him- or herself (the top player
often changed between seasons, so typically a dif-
ferent player is excluded in each season). Of the
remaining 29 participants, the majority viewed at
least one other player’s point values over the three
seasons: 27/29 (93.1 percent) during Season 1,
26/29 (89.7 percent) during Season 2, and 25/29

(86.2 percent) during Season 3.
Despite being allowed to view another player

for free on each of the last five hunts of each sea-
son, the mean number of times that another point
was accessed per participant was much lower than
the potential maximum of five (1.72 for Season 1,
1.59 for Season 2, and 1.21 for Season 3). The
mean number of different players accessed was
also low, with a mean of around one (1.17 for Sea-
son 1, 1.14 for Season 2, and .96 for Season 3). This
single model was typically the most successful: of
those participants who accessed at least one other
player’s point design, 25/27 (92.6 percent) viewed
the most successful player (the player with the high-
est cumulative score at Hunt 25) at least once dur-
ing Season 1, 21/26 (80.8 percent) during Season
2, and 22/25 (88.0 percent) during Season 3. These
copying choices are significantly different from
those expected if participants were viewing play-
ers at random (Season 1: x2(4) = 63.93, p < .001;
Season 2: x2

(4) = 60.92, p < .001; Season 3: x2
(4) =

69.75, p < .001). 

Were the Point Attributes More Highly 
Correlated Following Phase 3 (Horizontal 
Cultural Transmission) Than Following Phase 2
(Guided Variation)?

Summary: A largely nonsignificant trend suggests
that point attributes were more highly correlated
following Phase 3 than following Phase 2, consis-
tent with the operation of indirectly biased hori-
zontal cultural transmission.

Details: We again predicted stronger correla-
tions following the horizontal cultural transmis-
sion of Phase 3 (at Hunt 30) than following Phase
2 (at Hunt 25), after 24 hunts of individual trial-
and-error learning. The most appropriate data here
were obtained from the three six-person groups,
each of which was assigned to a different one of
the three environments, giving equal sample sizes
for each environment and, as these groups were
largest, the best chance to detect a significant effect
of horizontal cultural transmission. Table 3 shows
the 10 correlations between the point dimensions
for these two hunts (the lower two correlations in
each cell). For Season 1, 9/10 of the correlations
showed an increase from Hunt 25 to Hunt 30 (i.e.,
corrH30 > corrH25), as predicted. Six of these were
significant at p < .05 for Hunt 30, compared to two
for Hunt 25. Nine of the Season 2 correlations
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increased from Hunt 25 to Hunt 30, although only
one Hunt 30 correlation was significant. For Sea-
son 3, 9/10 correlations again showed an increase,
although the number of significant correlations for
Hunt 30—three—actually fell from the five sig-
nificant for Hunt 25. However, comparisons here
may be less valid as a result of the unequal sample
sizes for Hunt 30 (n = 18) and Hunt 25 (n = 75),
which also prevents the use of z-tests, whereas
adopting a Bonferroni-corrected a means that only
one of the Hunt 30 correlations is significant. Nev-
ertheless, we note the general pattern whereby
almost all attribute comparisons in all seasons
showed an increased correlation coefficient at Hunt
30 following indirectly biased horizontal cultural
transmission compared with Hunt 25 following
individual trial-and-error learning. 

Was There Less Within-Group Variation as a
Result of Cultural Transmission?

Summary:Yes, there was significantly less within-
group variation during periods of cultural trans-
mission compared with periods of individual
learning, consistent with the homogenizing effect
of indirectly biased within-group horizontal cul-
tural transmission.

Details: Figures 2a, 2b, and 2c show for Sea-
sons 1, 2, and 3, respectively, the within-group
coefficient of variation (WGCV) and between-
group coefficient of variation (BGCV) for length,
width, and thickness combined (the mean CV for
all three measures), for the three six-person groups.
A low WGCV indicates homogeneity within
groups. This could be because of either (1) indi-
vidual learning—different groups are learning in
different environments, or sets of optimal values,
so individual learning would be expected to cause
each group to converge on their different optima,
or (2) horizontal cultural transmission—following
Hunt 25, group members are copying the single
most successful player in their group, so groups
become homogenized. Figures 2a and 2b suggest
that (2) is operating mainly during Seasons 1 and
2, given that marked differences between WGCV
and BGCV occur only (and abruptly) following
Hunt 25, when cultural transmission within the
groups is permitted. These differences in variance
were tested using Kruskal-Wallis one-way
ANOVAs. At Hunt 30, following cultural trans-
mission, there was a significant effect of group for

length, width, and thickness for Season 1 (length:
x2(2) = 15.20, p < .001; width: x2(2) = 15.46, p <
.001; thickness: x2(2) = 12.42, p < .002), Season 2
(length: x2(2) = 12.00, p < .002; width: x2(2) =
11.83, p < .002; thickness: x2(2) = 6.79, p < .05),
and Season 3 (length: x2(2) = 15.63, p < .001;
width: x2(2) = 13.64, p < .001; thickness: x2(2) =
11.00, p < .004), indicating the homogenizing effect
of within-group horizontal cultural transmission. At
Hunt 25, the last individual-learning trial, Season
1 showed no effect of group for any of the three
attributes (length: x2(2) = 5.56, ns; width: x2(2) =
5.96, ns; thickness: x2(2) = .90, ns); Season 2
showed an effect of group for one of the attributes
(length: x2(2) = 12.74, p < .002; width: x2(2) = 2.11,
ns; thickness: x2(2) = 1.17, ns); and Season 3
showed an effect of group for two of the attributes
(length: x2(2) = 12.89, p < .002; width: x2(2) =
11.83, p < .003; thickness: x2(2) = 4.86, ns). Fig-
ure 2 also shows that there was less variation both
between and within groups during Season 3 than
during Seasons 1 and 2, a result of the cost of mod-
ification. This cost prevented participants from
experimenting with their point designs, reducing
the divergence and also attenuating the homoge-
nizing effect of horizontal transmission in Phase 3,
given that the groups were already homogenized,
as suggested by the Season 3 ANOVAs.

Did the Groups Outperform the Individual Con-
trols When They Had Access to Social Informa-
tion?

Summary:Yes, groups significantly outperformed
individual controls when the groups were permit-
ted to engage in cultural transmission, indicating
that indirectly biased cultural transmission was rel-
atively more adaptive than individual learning.

Details: Figures 3a, 3b, and 3c show the mean
scores during Seasons 1, 2, and 3, respectively, of
the 27 individual controls and the 18 participants
in groups of six, the latter of which could engage
in horizontal cultural transmission during the final
five hunts. In all three seasons the groups have
higher mean scores than the individuals during
those final five hunts, as predicted. Mixed ANOVAs
with hunt as a within-group factor and group size
(n = 1 vs. n = 6) as a between-groups factor showed,
for the last five hunts (Hunts 26–30), a significant
effect of group size for all three seasons and a larger
effect size for Season 3, consistent with the
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Figure 2. Within-group and between-group coefficient of variation (CV) for the six-person groups (N = 18) for (a) Season
1, (b) Season 2 and (c) Season 3. Values plotted are the mean CV for Height, Width and Thickness. The dashed vertical
line marks the final individual learning hunt before social learning was permitted.
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Figure 3. Mean participant score during (a) Season 1, (b) Season 2 and (c) Season 3 of individual controls (N = 27) and
participants in groups of six (N = 18). The dashed vertical line marks the final individual learning hunt before social
learning is permitted in the groups. Error bars show standard errors.
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increased cost of individual learning (Season 1:
F(1,43) = 4.76, p < .05, h2 = .10; Season 2: F(1,43)
= 4.23, p < .05, h2 = .09; Season 3: F(1,43) = 14.85,
p < .001, h2 = .27). ANOVAs on the previous five
hunts (Hunts 21–25), during which the groups
could not access social information, showed no
effect of group size—Season 1: F(1,43) = .05, ns;
Season 2: F(1,43) = .10, ns; Season 3: F(1,43) =
.03, ns.

Did Group Participants Benefit from Social
Information by Jumping to Globally Optimal
Peaks?

Summary:Yes, participants in groups, but not indi-
vidual controls, showed a significant tendency to
jump from locally optimal peaks to globally opti-
mal peaks in the fitness landscape, as a result of
indirectly biased cultural transmission.

Details: Here we calculated, for each participant
and for each season, the number of continuous
attributes (length, width, and thickness) that were
within five units either side of that attributes’global
optimum (O1 ± 5), giving a number between zero
and three. We predicted that this number would be
greater at Hunt 30 (after cultural transmission) than
at Hunt 25 (before cultural transmission) for the
participants in groups of six. Wilcoxon’s signed-
ranks tests showed this difference to be significant
for all three seasons—Season 1: z = 2.71, p < .01;
Season 2: z = 2.27, p < .05; Season 3: z = 2.57, p
< .01. For the individual control participants, this
comparison was not significant for Season 2 (z =
1.41, ns) or Season 3 (z = 1.00, ns), whereas Sea-
son 1 showed a significant decrease (z = –2.45,
p < .05). It is unclear why individual-learning con-
trols showed this decrease, but the hypothesis that
indirectly biased cultural transmission increases
the number of participants at global optima is sup-
ported and cannot be attributed simply to individ-
ual improvement over time. We also tested the
specific hypothesis that access to social informa-
tion allows participants to jump from locally to
globally optimal fitness peaks. Hence we calculated
the number of continuous attributes around the
local optimum (O2 ± 5), and compared this value
at Hunt 25 with the number of attributes within five
units of the globally optimal peak at Hunt 30, pre-
dicting an increase for the group participants and
no difference for the individual participants. As
predicted, Wilcoxon’s signed-ranks test showed

significant increases for the group participants for
all three seasons—Season 1: z = 3.40, p < .001; Sea-
son 2: z = 2.18, p < .05; Season 3: z = 2.85, p < .01.
For the individual participants, there was no sig-
nificant increase during any season—Season 1: z
= 1.80, ns; Season 2: z = .21, ns; Season 3: z = 1.52,
ns.

How Did Individuals Learn on Their Own?

Summary: Most individuals changed one point
attribute per hunt by a magnitude of five units,
except when their score was low (when they
changed more attributes by greater magnitudes)
and when individual learning was costly (when
they changed attributes less often by greater mag-
nitudes). Continuous attributes (e.g., length) were
modified more frequently than discrete attributes
(e.g., shape).

Details: As well as exploring the effects of cul-
tural transmission, we can also look at how indi-
viduals engaged in the task on their own (both the
individual participants and the group participants
during Phase 2). A player’s strategy can be defined
usefully by two parameters. During each hunt, a
participant can choose to modify one, more than
one, or none of the five attributes. The parameter,
d (0 ≤ d ≤ 5), is defined as the number of attributes
changed during one hunt. The second parameter, c
(0 ≤ c ≤99), is defined as the mean amount by which
the participant changed the continuous attributes
(Length,Width, and Thickness), ranging from 0 (no
change) to 99 (largest possible change). Both d and
c are integers and take no value for Hunt 1 when
there was no modification. Figure 4a shows that d
rapidly fell during the first seven hunts of each sea-
son before leveling off, apart from an increase dur-
ing Hunt 26, when some of the participants copied
the points of other players (especially in Season 3).
Excluding Hunts 1–6 and Hunt 26, the majority of
participants on the majority of hunts chose to
change one dimension (d = 1) during Season 1
(mean = 1.43, median = 1, mode = 1) and Season
2 (mean = 1.22, median = 1, mode = 1), and most
chose not to change any dimension (d = 0) during
Season 3 (mean = .45, median = 0, mode = 0).
There was also a significant negative correlation
between Score (number of calories received dur-
ing a single hunt) and d (Season 1: rs = –.368, p <
.01; Season 2: rs = –3.69, p < .01; Season 3: rs =
–.243, p < .01), suggesting that players respond to
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a low score by changing more dimensions at once.
Figure 4b shows a similar pattern of change for c.
Excluding Hunts 1–6 and Hunt 26, most partici-
pants during the first two seasons made changes of
five units (Season 1: mean = 9.17, median = 5,
mode = 5; Season 2: mean = 9.50, median = 5, mode
= 5). In Season 3 this increased to 10 units (Sea-
son 3: mean = 10.59, median = 10, mode = 10) as
a result of the increased cost of individual learn-
ing. There was a significant negative correlation
between score and c (Season 1: rs = –.323, p < .01;
Season 2: rs = –.423, p <.01; Season 3: rs = –.304,
p <.01), suggesting that players respond to a low

score by increasing the amount by which they
change the dimensions. 

Figures 5a, 5b, and 5c show for each hunt the
proportion of the total 81 participants who changed
each dimension, for Seasons 1, 2, and 3 respec-
tively. for length, width, and thickness, the fre-
quency of modification started around .6 to .85 for
Season 1 before leveling off at around .35 (mean
for Hunts 7–30: length = .34, width = .34, thick-
ness = .35). Season 2 continued this trend (mean
for Hunts 7–30: length = .33, width = .33, thick-
ness = .33), whereas Season 3 featured lower fre-
quencies as a result of the cost of modification

Figure 4. (a) Mean number of dimensions changed per hunt (parameter d), for each season. Data from all 81 partici-
pants. (b) Mean unit change in the continuous dimensions (Height, Width and Thickness combined) per hunt (parame-
ter c), for each season. Data from all 81 participants, and excluding cases where the dimension was not changed.
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Figure 5. Proportion of participants during (a) Season 1, (b) Season 2 and (c) Season 3 who, on each hunt, changed each
dimension.
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(mean for Hunts 7–30: length = .14, width = .16,
thickness = .17). Shape and color were changed less
frequently than length, width, and thickness in Sea-
son 1 (mean for Hunts 7–30: shape = .18, color =
.15), Season 2 (mean for Hunts 7–30: shape = .17,
color = .14), and Season 3 (mean for Hunts 7–30:
shape = .08, color = .05). Paired t-tests on these fre-
quencies (Table 5) from Hunts 7–30 confirmed that
participants showed a preference for changing the
three continuous dimensions over the two discrete
dimensions. No differences were found for Seasons
1 and 2 between the continuous attributes (length
vs. width vs. thickness), although thickness was
modified more than length during Season 3. The
greater fitness contribution of Thickness (equation
1) may therefore have had an effect when partici-
pants became more experienced with the environ-
ment, and when modification was costly and there
was a greater incentive to improve point fitness.
Shape also showed significantly more modification
than color, perhaps reflecting the fact that color is
neutral.6

Discussion

The primary aim of this study was to experimen-
tally simulate the two different transmission
processes—guided variation and indirect bias—
that Bettinger and Eerkens (1999) hypothesized to
have generated differences in the degree to which
arrow projectile-point attributes are correlated with
each other in two regions of the Great Basin. They
argued that points from eastern California, for
which attributes such as length or width were poorly
correlated, originally spread through a process of
guided variation, where individuals first adopted

point technology from a model, then experimented
with that design using individual trial and error.
Hence, point designs diverged and correlations
between point attributes fell. Points from central
Nevada, meanwhile, feature highly correlated
attributes, which Bettinger and Eerkens (1999)
argued was because these points originally spread
through a process of indirect bias, where individ-
uals adopt point designs wholesale from a single
successful model and do not modify or experiment
with that design. Hence, every individual acquires
and keeps the same point design, and the attributes
become highly correlated.

Here, we simulated these two processes exper-
imentally by (1) having participants copy the design
of a model after being given information regarding
that model’s prior success (permitting indirect bias)
and then (2) allowing the participants to experiment
with their point designs in novel selective envi-
ronments (permitting guided variation). The results
matched the patterns of attribute correlation found
by Bettinger and Eerkens (1999), with the former
points exhibiting highly correlated attributes and
the latter points exhibiting less correlated attributes.
Hence, we can be more confident in Bettinger and
Eerkens’s (1999) hypothesis that these different
archaeological patterns are the result of differences
in how projectile-point technology in the two
regions was originally transmitted. 

To some extent these findings are unsurprising;
during Phase 1 participants had no choice but to
copy, and were only given information about suc-
cess, so the obvious and straightforward choice
was to copy the most successful model. We set the
experiment up in this way primarily because pre-
vious experiments have found that participants tend
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Table 5. Paired T-Tests Comparing the Frequency with Which Each Attribute Was Modified.

Comparison Season 1 Season 2 Season 3

Height x Width .49 -.70 -2.06
Height x Thickness .41 -.70 -3.85**
Width x Thickness .12 -.16 -1.29
Height x Shape 16.63*** 14.62*** 6.08***
Height x Color 14.27*** 17.92*** 9.92***
Width x Shape 14.70*** 17.16*** 7.18***
Width x Color 15.21*** 22.75*** 8.80***
Thickness x Shape 14.59*** 15.57*** 9.51***
Thickness x Color 14.57*** 18.82*** 10.36***
Shape x Color 2.96** 2.63** 3.41**

Note: Values shown are t values with df = 23.
*p < .05; **p < .01; ***p < .001. 
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not to engage in social learning, even when it is opti-
mal for them to do so (e.g., McElreath et al. 2005),
and we wanted ensure that we had data that had
been generated by social learning. (Note, however,
that a potential alternative strategy for our partici-
pants during Phase 1 was to disregard information
concerning relative success and choose a model at
random; indeed, not every participant chose the
most successful model during Phase 1.) In Phase
3, therefore, we provided a more stringent test of
our prediction. During Phase 3 participants could
copy the point design of another member of their
immediate group, given information about the
cumulative success of those group members. Par-
ticipants were not forced to copy, and could choose
to continue engaging purely in individual learning.
Yet a large majority of participants chose to copy
the point design of the most successful participant
in their group, i.e., exhibit indirectly biased hori-
zontal cultural transmission, making the correla-
tions between the different point attributes higher
in Phase 3 (indirectly biased horizontal cultural
transmission) than in Phase 2 (guided variation).
In other words, our participants were quite willing
to discard the point design that they had spent sev-
eral trials modifying and improving, and replace it
with a better point design from the most success-
ful member of their group. The results of Phase 3,
then, further increase our confidence in Bettinger
and Eerkens’s hypothesis.

During Phase 3 we also found that participants
in groups, who could engage in cultural transmis-
sion, had significantly higher scores than individ-
ual controls, who could not engage in cultural
transmission, indicating that indirectly biased cul-
tural transmission was, for this task, relatively more
adaptive than individual learning. This relative
advantage increased during Season 3 when we
introduced a cost to modification, consistent with
previous theoretical analyses that show that social
learning is relatively more adaptive when individ-
ual learning is costly (Boyd and Richerson 1989,
1995). This latter finding suggests a possible expla-
nation for the original differences observed in the
Great Basin: Perhaps the prehistoric Nevadan envi-
ronment was harsher in some respect, imposing a
greater cost on experimentation and necessitating
a greater reliance on indirectly biased cultural trans-
mission, hence reducing attribute correlations rel-
ative to California. This hypothesis might be tested

with further archaeological study.7

A secondary goal of the study was to simulate
cultural transmission in a multimodal adaptive
landscape. Whereas previous experiments (e.g.,
Kameda and Nakanishi 2002, 2003; McElreath et
al. 2005) have used relatively simple learning tasks
requiring the participant to select one of two options
(e.g., crops or rabbit locations), here we used a
more complex learning task involving multiple con-
tinuous and discrete, functional, and neutral attrib-
utes. Some of these attributes had bimodal fitness
functions, thus giving multiple locally optimal
designs of varying fitness, i.e., a multimodal adap-
tive landscape. The results of our experiment sug-
gested that this multimodal adaptive landscape was
instrumental in generating and maintaining diver-
sity in the virtual-point designs during the period
of individual learning (Phase 2), because different
individuals converged by chance on different
locally optimal peaks. We also found that this mul-
timodal adaptive landscape allowed participants
who engaged in indirectly biased horizontal cul-
tural transmission, where individuals copy the
design of the most successful person in their envi-
ronment, to escape from these local optima and
jump to the globally optimal peak (or at least the
highest peak found by people in that group). That
is, the multimodal adaptive landscape was instru-
mental in making indirect bias relatively more suc-
cessful than individual learning, and potentially
more successful than other social learning strate-
gies, such as conformity.8

How realistic is this assumption of a multimodal
adaptive landscape? Boyd and Richerson (1992)
have argued that multimodal adaptive landscapes
are likely to be common in cultural evolution and
may significantly affect the historical trajectories
of artifact lineages, just as population-genetic mod-
els suggest that multimodal adaptive landscapes
have been important in biological evolution by
guiding historical trajectories of biological lineages
(Arnold et al. 2001; Lande 1986; Simpson 1944).
Indeed, many problems and tasks faced by mod-
ern and prehistoric people would likely have had
more than one solution, some better than others,
but all better than nothing, and solutions are likely
to represent compromises between multiple func-
tions and requirements. With respect to projectile
points, Cheshier and Kelly (2006) recently sum-
marized experimental evidence for tradeoffs in
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point designs among such factors as accuracy,
range, killing power, and durability, stating, for
example, that “thin, narrow points have greater pen-
etrating power, but wide, thick points create a larger
wound that bleeds more easily” (Cheshier and
Kelly 2006:353). Such functional tradeoffs would
potentially produce multiple locally optimal point
designs, with, for example, one optimal design
maximizing penetrating power and another maxi-
mizing bleeding.9At a more general level, the bow-
and-arrow and the spear-and-spearthrower repre-
sent two alternative solutions to the same problem
(firing projectiles), with the bow and arrow appar-
ently more effective, given that it replaced the spear
thrower in most regions (Knecht 1997). This
change is likely to have been the result of horizontal
cultural transmission, with a jump from a lower
peak (spear thrower) to a higher peak (bow and
arrow) in the available design space of projectile
technology. And adaptive landscapes are not
restricted to material culture; Bettinger and
Baumhoff (1982) argued that different Great Basin
subsistence strategies represent different locally
adaptive peaks in a multimodal adaptive landscape.
The point we wish to emphasize is that it is only
by formally testing assumptions regarding selec-
tive environments with experimental simulations,
as was done here, as well as with mathematical
models and computer simulations, that we can
make quantitative predictions that can then be tested
with archaeological data.

Several other findings are worth highlighting.
First, we found that color, a neutral trait that had
no effect on fitness/score, showed a virtually iden-
tical pattern of correlations as the other functional
attributes, indicating that the participants readily
copied color along with the others. This is an exam-
ple of a neutral trait “piggybacking” on functional
traits as a result of indirectly biased cultural trans-
mission, as anticipated by Boyd and Richerson
(1985). It would be instructive to see to what extent
maladaptive traits (that impose a fitness cost) can
similarly piggyback on functional traits. Second,
we found that the continuous functional attributes
(height, width and thickness) were modified more
frequently than the discrete functional attribute
(shape). This was probably because it was much
easier to determine the optimal shape (try all four
shapes and see which gave a higher fitness, requir-
ing exactly four trials) than to determine the opti-

mal values of the continuous attributes (which,
because they varied from 1–100, would likely
require many more than four trials to find). This
might potentially explain apparent cases of “punc-
tuated equilibria” in the archaeological record—
periods of gradual change constitute modification
of continuous attributes such as length, and abrupt
change constitutes a change in a discrete attribute,
for example to a new shape or material (we thank
J. Eerkens for pointing this out). Third, our finding
that increasing the cost of modification increases
the reliance on social learning suggests that com-
plex technologies, which are costly to invent, learn,
and maintain, should be more dependent on social
learning than simpler technologies (see also Hen-
rich 2004). Similarly, technologies that directly
affect survival, such as those related to hunting,
should be more dependent on social learning than
technologies that bear less directly on survival, such
as decorative artifacts, given that the cost of exper-
imentation in the former is higher, where failure
can mean starvation. Finally, although conformist
transmission is commonly seen as generating the
conditions for cultural group selection, i.e., low
within-group variation and high between-group
variation (e.g., Henrich and Boyd 1998), our results
suggest that indirectly biased cultural transmission
can potentially generate the same conditions.
Future studies might simulate cultural group selec-
tion directly by allowing multiple groups to com-
pete with one another, as in studies by Insko et al.
(1980, 1983) and recent studies in experimental
economics (e.g., Gurerk et al. 2006), while sys-
tematically controlling the movement of people
and/or transmission of knowledge across groups.
Although this might be technically unfeasible in the
psychology lab, the Internet provides an ideal “vir-
tual laboratory” for such studies. Indeed, thousands
of people are already buying, selling, and using pro-
jectile technology, such as arrowheads, in Mas-
sively Multiplayer Online Role-Playing Games,
potentially offering a mine of untapped data regard-
ing the innovation, trade, and cultural transmission
of artifacts and behavior.

There are several other ways in which this study
could be extended. Cheshier and Kelly (2006)
demonstrated experimentally that the attributes of
actual projectile points are functionally linked, with
durability determined by the thickness:length ratio,
unlike in our experiment where the point attributes
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independently contributed to overall fitness. It
would be instructive to see how participants would
deal with this more complex selective environment
and whether the effects of cultural transmission
remain the same. This is one of many parameters
and assumptions that might be modified in further
studies. E, the magnitude of the random error in
the feedback received by participants, and s, the
coefficient of selection in equations (2) and (3), can
both be modified to change the difficulty of indi-
vidual learning. Increasing the difficulty of indi-
vidual learning is predicted to increase the frequency
of social learning (Boyd and Richerson 1995), in
the same way that increasing the cost of individual
learning does, which during Season 3 here was
found to increase the adaptive benefit of cultural
transmission relative to individual learning. The
ratio P1: P2 can also be manipulated to change the
relative height of the two fitness peaks in Figure 1
and hence the shape of the adaptive landscape.

As noted above, the cultural transmission
employed by our participants was to a large degree
constrained and forced by us, the experimenters.
We divided individual and social learning into sep-
arate phases, forced participants to copy during
Phase 1, and to some extent guided their decision
as to whom to copy by only presenting informa-
tion regarding relative success. Undoubtedly, real-
ity is and was much more complex. Learning is not
divided into separate social and nonsocial phases;
rather, people can choose when to engage in indi-
vidual learning and when to employ different social
learning strategies (or employ both simultane-
ously), and they can choose a model based on mul-
tiple sources of information. There are also many
factors that we omitted from our simulations yet
would likely have affected projectile-point evolu-
tion, such as the process of manufacturing a point,
the availability of raw materials, reworking, discard
patterns, and the sociocultural significance of
points. A simulation that is as complex and messy
as reality, however, is more or less useless. Our
intention with this initial experimental simulation
was to ensure as much as possible that the partici-
pants exhibited the different transmission biases
that our hypotheses required. Future studies might
lift such constraints in a systematic manner, for
example, by presenting participants with more
information regarding potential models, such as
aspects of appearance or personality, or arbitrary

social markers, to determine whether relative suc-
cess is still used to select models. Allowing partic-
ipants to flexibly engage in social and individual
learning throughout the experiment might gener-
ate information on producer-scrounger dynamics
similar to those observed by Kameda and Nakan-
ishi (2002). Our participants also had no choice
whether to allow another participant to copy their
point designs, which is probably unrealistic, espe-
cially in the competitive task that was simulated
here. Future studies might allow successful mod-
els to set a price for access to their point design,
enabling a prestige-based “information market”
(Henrich and Gil White 2001). 

Some might argue that experiments with
modern-day Western undergraduates can tell us lit-
tle about the behavior of prehistoric hunter-
gatherers, given the extensive differences in
demographics, lifestyles, and environments of these
two groups. While this is to some extent a valid crit-
icism, it is somewhat unavoidable—barring the
invention of a time machine, we cannot go back
and directly study prehistoric patterns of cultural
transmission. The problem might be partially
reduced by using participants who are more simi-
lar to prehistoric hunter-gatherers than Western
undergraduates, such as contemporary hunter-
gatherers, along the lines of recent cross-cultural
experiments regarding altruism (Henrich et al.
2004), although even contemporary hunter-
gatherers likely differ in many ways from prehis-
toric Great Basin hunters-gatherers. Another
difference is participant motivation. Whereas pre-
historic hunters were hunting for their survival, our
participants were taking part for $8, raising the
question of whether our participants were suffi-
ciently motivated. Future studies might increase
motivation by matching payment to performance
in the experiment, as is commonly done in eco-
nomics experiments (although, as shown by
Camerer and Hogarth [1999], performance-related
payment does not necessarily increase motivation
or affect participants’performance), and/or increase
the absolute value of payment. More generally,
however, we stress that what experiments lack in
external validity they make up for in internal
validity—the ability to manipulate variables, con-
trol for confounding variables, assign participants
to control and experimental groups, accurately
record complete datasets, etc. The key point is that
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different methodologies complement one another:
experimental methods, which have low external
validity and high internal validity, can be used
alongside other methods, such as archaeological
methods, which have high external validity and low
internal validity, to provide a more complete and
rigorous understanding of the past than any one of
these methods alone (see Mesoudi 2007, 2008).
Indeed, we hope that the present study has shown
that experiments can be useful tools for simulating
the population-level effects of different cultural
transmission processes and for exploring the rela-
tive efficacy of those processes in a way that is
often impossible with archaeological data alone.
The findings from experiments can inform com-
puter simulations and mathematical models, which
can in turn verify and extend the experimental find-
ings. The findings of both experiments and mod-
els then generate additional hypotheses that can be
tested with further archaeological investigation,
thus leading to a fuller understanding of past cul-
tural change than any one method or approach can
yield alone. Although reality is and was undoubt-
edly much more complex and messy than is
assumed in our experiment, this kind of experi-
mental simulation can be valuable as a means of
testing specific archaeological hypotheses regard-
ing cultural-transmission biases. We reiterate that
the use of experimental simulations naturally fol-
lows from an evolutionary approach to cultural
change, which emphasizes how individual-level
differences in transmission can have major effects
at the population level. Simple, highly controlled
experimental simulations of biological inheritance
and selection have been enormously useful in expli-
cating the complexities of biological evolution, and
experimental simulations of cultural transmission
can be similarly useful in explicating the com-
plexities of cultural evolution.
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Notes

1. Although there have been attempts at a similar synthe-
sis for human culture in the past (e.g., Schwartz and Mead
1961), these have been hindered by the flawed and distorted
Spencerian theory of cultural “evolution” prominent within
anthropology for much of the twentieth century (Lyman and
O’Brien 1997).

2. As originally defined by Boyd and Richerson
(1985:243), indirect bias can involve the selection of a model
on the basis of any “indicator trait,” of which hunting success
is but one example (others might include prestige, similarity,
age, health or sex: see Henrich and McElreath 2003). For
brevity, and to maintain continuity with Bettinger and
Eerkens (1999), we refer throughout simply to “indirect
bias,” although we mean “hunting-success-based indirect
bias.”

3. This argument is similar to Fisher’s (1930) argument
for the evolution of sexual reproduction in biological organ-
isms. Fisher argued that sexual reproduction allows different
beneficial mutations that have arisen in separate individuals
to be brought together through recombination. In asexual
organisms, in contrast, different beneficial mutations will not
co-occur unless they independently evolve in the same indi-
vidual lineage. Hence, both asexual reproduction (biology)
and individual learning (culture) will drive individuals to
locally optimal peaks in an adaptive landscape, whereas both
sexual reproduction/recombination (biology) and indirectly
biased horizontal cultural transmission (culture) allow indi-
viduals to jump to higher peaks in the adaptive landscape.
Subsequent models and experiments have disagreed as to the
validity of Fisher’s (1930) hypothesis, and there is an ongo-
ing debate regarding the adaptive advantages of sexual repro-
duction (Barton and Charlesworth 1998; Rice 2002).
Generally, however, many of the problems with Fisher’s
hypothesis as applied to biological evolution may not apply to
the case of cultural transmission, e.g., the two-fold “cost of
sex” (cultural transmission does not produce/require two dis-
tinct “sexes”), the need for large numbers of beneficial muta-
tions in the population (culture often has high mutation rates),
and the fact that recombination is just as likely to break up
combinations of beneficial mutations as bring them together
(cultural transmission is not random, and people do not ran-
domly copy only half of an individual’s behavior).

4. Note that in Eerkens and Lipo’s (2005) models the
source of variation (copy errors in transmission) is different
to the source of variation in our experiment (idiosyncratic
individual learning in a multimodal fitness landscape).
Nevertheless, indirectly biased cultural transmission has the
same effect of reducing within-group variation irrespective of
the source of variation.

5. The experimental design is most easily understood by
viewing video clips of a participant engaging in each of the
three phases. These videos can be viewed on the authors’
websites, at either http://amesoudi.googlepages.com/arrow-
head-videos or http://cladistics.coas.missouri.edu/arrowhead-
videos.html.

6. We also ran an agent-based computer simulation of our
experimental results, in which computer-generated agents
played the same experiment as did our human participants
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(Mesoudi and O’Brien 2008). To maximize the validity of the
agent-based simulation, the behavior of the agents was spec-
ified using parameters from our experimental data. Hence the
agents’ individual learning was specified by the modal values
of d and c exhibited by our human participants, and the
agents’ social learning was specified by the indirect bias
exhibited by our human participants. After confirming that
the simulated agents generated the same data as did our
human participants, we then extended the simulation in ways
that were impractical in the experiment, for example by
increasing the group size beyond six, increasing the number
of hunts beyond 30, changing the shape of the fitness land-
scape from multimodal to unimodal, and exploring the effects
of alternative social learning strategies such as conformity or
random copying. Subsequent footnotes highlight useful find-
ings from this model; for more details see the forthcoming
Mesoudi and O’Brien (2008), or contact the authors.

7. The agent-based simulation (Mesoudi and O’Brien
2008; see note 6) showed that the relative advantage of indi-
rectly biased cultural transmission over individual learning
also increased with group size. This is because with more
people in a group, it is more likely that one of them will find
themselves, perhaps by chance, at the globally optimal peak
in the fitness landscape. Other group members can then copy
this most-successful group member and all converge on the
globally optimal peak. This provides another potential expla-
nation for the difference between Californian and Nevadan
points—a larger population size (or more accurately, greater
population density) in Nevada could have made cultural
transmission relatively more adaptive and hence more fre-
quent, resulting in higher attribute correlations in Nevada
compared to California, where low population density made
cultural transmission relatively less adaptive and less com-
mon. There is evidence, however, for greater population den-
sity in California than in Nevada (Steward 1938), counting
against this “increased Nevadan population density” hypoth-
esis, so we favor the “more costly Nevadan individual learn-
ing” explanation given in the main text. (Note that these two
explanations are not independent: a harsh environment could
both increase the cost of individual learning and reduce pop-
ulation density.) This is a nice example of how experiments
and models that draw on cultural transmission theory can
generate competing hypotheses with clear predictions that
can be tested with anthropological data. 

8. The agent-based model (Mesoudi and O’Brien 2008;
see note 6) showed that indirectly biased cultural transmis-
sion was more adaptive than a number of other social-

learning strategies (conformity, random copying, and copying
the average), especially in larger groups (see note 7). The
simulations also showed that the multimodal adaptive land-
scape assumption was key to this advantage. For example,
conformity performed no better than individual learning in
the simulations because there is no guarantee that the major-
ity of individuals will be on the globally optimal peak. Agents
engaging in conformist transmission are therefore just as
likely to converge on a local optimum as a global optimum in
the absence of information regarding the success of other
individuals (unless individuals at the global optimum out-
compete individuals at the local optima and become the
majority, through cultural group selection). This contrasts
with previous models that suggest that conformist transmis-
sion is adaptive under a wide range of conditions (Henrich
and Boyd 1998), possibly because those models assume that
individuals exhibit only one of two behaviors, one of which
has a higher payoff, rather than a multimodal adaptive land-
scape with locally optimal fitness peaks. Indeed, our simula-
tions showed that, in a unimodal adaptive landscape,
conformity performed equally as well as indirect bias.
However, the simulations also showed that, over large num-
bers of hunts in a unimodal adaptive landscape, neither con-
formity nor indirect bias performed better than pure
individual learners, because in a unimodal adaptive landscape
there are no locally optimal peaks for individual learners to
get stuck on, and they will all eventually find their way to the
top of the single globally optimal fitness peak. Generally,
then, both our experiment and simulations show how the
shape of the adaptive landscape can strongly affect cultural
dynamics. The apparent paradoxes of stable suboptimal
behavior frequently found by cognitive psychologists (e.g.,
Fu and Gray 2004, 2006) might also be resolved if partici-
pants in those experiments were allowed to engage in indi-
rectly biased cultural transmission, and jump to a global
optimum. 

9. Indeed, this is very similar to the biological evolution
of beak size and shape in Darwin’s finches, in which there is
a “trade-off between feeding rates on small soft seeds and
large hard seeds” (Schluter et al. 1985:1057). Schluter and
Grant (1984) showed that such trade-offs result in a multi-
modal adaptive landscape, the shape of which has signifi-
cantly influenced finch-beak evolution.
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