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Abstract Michael Schiffer’s theoretical and methodological contributions to
archacology are substantial. For the last two decades, Schiffer has become
increasingly interested in the history of electrical technology, including portable
radios, electric automobiles, eighteenth-century electrostatic technology, and, most
recently, nineteenth-century electric light and power systems. Schiffer has long held
a behavioral view, which focuses analytical attention on interactions between
humans and material things, including complex technological systems (CTSs). For
Schiffer, two key aspects of the evolution of CTSs are stimulated variation, defined
as an increase in invention resulting from changing selective conditions, and
cascading, defined as sequential spurts of invention that occur through the
recognition of emergent performance problems in a CTS. To attain maximum
usefulness, these concepts should be placed in a modern evolutionary framework
that correctly identifies, and does not oversell, the role played by cultural selection.
Research on individual and social learning provides the critical link between
Schiffer’s stimulated variation and cascade models and the diffusion of CTSs.

Keywords Cascade model - Individual learning - Innovation - Invention - Social
learning - Tipping points
Introduction

Much of current American archaeology, both theoretically and methodologically,
bears the influence of Michael Schiffer. His many years of commitment to the
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education of graduate and postdoctoral students are evidenced especially in his
Laboratory of Traditional Technology at the University of Arizona (e.g., Schiffer and
Skibo 1987, 1989; Skibo et al. 1989; Schiffer 1990). For Schiffer (2008b, p. ix),
human life “consists of the ceaseless and varied interactions between people and
material things,” irrespective of place or time. This view led him in the 1980s toward
a research focus on modern material culture, specifically the history of electrical
technology—portable radios (Schiffer 1991, 1993), electric automobiles (Schiffer et
al. 1994), eighteenth-century electrostatic technology (Schiffer et al. 2003), and,
most recently, electric light and power systems in the pre-Edison nineteenth-century
industrialized world (Schiffer 2005a,b, 2008a,b, 2010).

Across these phenomena, Schiffer has identified general principles that guide the
creation of a complex technological system (CTS), which he defines as “any
technology that consists of a set of interacting artifacts” (Schiffer 2005a, p. 486).
Schiffer focuses on the various scales of CTS interactions—among people, artifacts,
and environmental phenomena—that both create and sustain a system at these scales.
Take, for example, a weapon-delivery system such as a bow and arrow. It represents a
CTS at one scale, but moving one step down, the bow itself is a CTS, as is the arrow.
Each comprises a number of components—the arrow has a shaft, a stone tip, fletching,
and lashing—each of which affects the “fitness,” or success, of the CTS.!

Our interest here is in Schiffer’s work on stimulated variation and the cascade
model, which he addressed most directly in two articles in American Antiquity
(Schiffer 1996, 2005a). In these works, Schiffer defines stimulated variation as an
increase in invention resulting from changing selective conditions. In the cascade
model, sequential spurts of invention occur through the recognition of emergent
performance problems in a CTS. Stimulated variation can create “tipping points” of
technological change by triggering cascades through multiple scales, from massive
networks of interconnected individuals (e.g., Watts 2002) all the way down to the
singular mind (Gabora 2008).

Schiffer’s work on stimulated variation and the cascade model represents a
turning point in the long history of archaeological study of technological change,”

' As Wimsatt (1999, p. 283) noted, the seeming arbitrariness of cultural traits as cultural fragments
provides “our ability to re-package and re-articulate cultural products into seemingly arbitrary larger or
smaller constructions to be replicated and transmitted as units.” In other words, “most cultural products are
also compound products” (Wimsatt 1999, p. 285)—a characteristic not lost on early ethnologists. Driver
and Kroeber (1932, p. 213), for example, had this to say: “Are our elements or factors, the culture traits,
independent of one another? While we are not prepared to answer this question categorically, we believe
that culture traits are in the main if not in absolutely all cases independent.... Essential parts of a trait
cannot of course be counted as separate traits: the stern of a canoe, the string of a bow, etc. Even the bow
and arrow is a single trait until there is question of an arrow-less bow. Then, we have two traits, the pellet
bow and arrow bow.” Similarly, Barnett (1953, p. 356) remarked, there are “persistent linkages between
idea-sets as they diffuse across ethnic boundaries. Artifacts of this sort are called complexes because the
analyst finds them to be made up of more than one component.”

2 Several archacological studies have drawn inspiration in part from Schiffer’s treatment of stimulated
variation and the cascade model. For example, Lyman and O’Brien (2000) used a variety of data sets,
including Schiffer’s (1996) radio data, to show the usefulness of clade-diversity diagrams for exploring the
origination of novel variants and explaining the history of artifact lineages. Similarly, Lyman et al. (2008,
2009) and VanPool et al. (n.d.) used clade-diversity diagrams to examine the evolution of prehistoric
weapon-delivery systems in western North America, beginning with the atlatl and dart and ending with the
bow and arrow.
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which has mainly emphasized diffusion and trade (Lyman and O’Brien 2003).
Schiffer (2005a, p. 499) believes we can do better, pointing out that “archaeologists
have seldom exercised the generalizing research option when studying invention.
This leaves the door open for devising new models and theories that can complement
narratives by implicating widespread invention processes operative in specific
behavioral contexts, such as CTSs.” Indeed, the inventive process has been well
studied in the social sciences generally (e.g., Basalla 1988; Petroski 1992; Rogers
1995; Ziman 2000; Ormerod 2006; Arthur 2009) but not particularly well in
archaeology (Fitzhugh 2001).

There are, however, signs that the situation is changing, stimulated in large
part by an ever-growing interest in the evolutionary relationship between biology
and culture (e.g., Boyd and Richerson 1985; Durham 1991; Richerson and Boyd
2005; Lipo et al. 2006; Mace et al. 2006; Mesoudi, Whiten, and Laland 2006;
Shennan 2009; O’Brien and Shennan 2010). Central to this interest is cultural
transmission—how information makes its way across the social landscape
(Cavalli-Sforza and Feldman 1981; Boyd and Richerson 1985; Henrich and Boyd
1998; Shennan 2002; Laland 2004; Mesoudi, Whiten, and Dunbar 2006; Franz and
Nunn 2009; Mesoudi 2011a; Rendell, Fogarty, et al. 2011). Theoretical modeling
of cultural transmission is based on the premise that genes and culture provide
separate, though linked, systems of inheritance, variation, and evolutionary change
(Cavalli-Sforza and Feldman 1981; Boyd and Richerson 1985; Durham 1991;
Feldman and Laland 1996; Laland ef al. 2010; Richerson et al. 2010). Cultural
transmission produces similarity in behavior that cannot be accounted for by
genetic transmission or continuity of environment (Mace and Pagel 1994; O’Brien
and Lyman 2002; Bentley and Shennan 2003; Mace and Jordan 2011; Shennan
2011).

There is also a growing literature on simulating cultural transmission under
laboratory conditions (Kameda and Nakanishi 2003; Baum et al. 2004; McElreath et
al. 2005; Mesoudi 2007; Mesoudi and Whiten 2008). In a typical experiment,
participants in small groups engage in a game designed to capture some simplified
aspect of real-life cultural change. Over repeated experimental trials, representing
generations, participants are allowed to learn from one another—that is, engage in
cultural transmission. The experimenter can systematically control who learns what,
and from whom and how, in order to examine the effects various cultural-
transmission biases have on broader patterns of cultural change (Mesoudi 2010).
These middle-range experiments (e.g., Mesoudi 2010, 2011b; Mesoudi and O’Brien
2008a,b) provide the necessary bridge between theoretical models and applications
of the models to empirical data.

Here, we show how the key components of cultural transmission—invention and
innovation—are also central to the development of a CTS. Although the terms are
often used interchangeably in the social-learning literature (e.g., Laland and Reader
2010), we take a stricter stance, defining invention as a novelty and innovation as a
novelty that has diffused through a population. If a novelty does not diffuse, then it
does not qualify as an innovation. This distinction follows the work of Austrian
economist Joseph Schumpeter (1942), and it allows us to keep separate two distinct
processes: the production of variants and the subsequent diffusion of a subset of
those variants.

@ Springer



312 O’Brien and Bentley

Schiffer’s Models

As a preface to our discussion, we summarize Schiffer’s (1996, 2005a) take on
stimulated variation and the cascade model. Establishing his position will then allow
us in the next section to match what he has to say with results from studies of how
people learn. We point out that we do not agree with Schiffer in several places,
especially with respect to the role he assigns selection in the creation of
technological variants. This is less a criticism of his work than it is an opportunity
to demonstrate how our modern understanding of learning, which has grown
exponentially over the past decade, can extend Schiffer’s insights into how
innovations are created and how they diffuse.

Stimulated Variation

Schiffer (1996) stated that variation in a population is a consequence of both prior
selection, which reduces variation, and invention and borrowing, which generate
variation. Because selection operates on variation, the state of variation at that point
immediately constrains the outcome of selection. Schiffer (1996) identified two
contexts for selection: immediate and extended. The immediate selective context
consists of “all activities in the life history of an artifact type...procurement,
manufacture, transport, distribution, storage, use, maintenance, reuse, disposal, etc.
These activities exert selective pressures, and the result is the differential persistence
of variants” (Schiffer 1996, p. 654). The extended selective context consists of
“activities, agents, and mechanisms that...are...coupled, by flows of energy,
artifacts, or people, to activities in the immediate selective context” (Schiffer 1996,
p. 654).

To Schiffer, invention is not a random process. Rather, it is patterned, often highly
patterned, by stimulated variation. For example, as radios became popular at the
beginning of the twentieth century, inventions proliferated in terms of the parts and
assemblies that went into transmitters and receivers—typical of the geometric
growth that a successful new technology spawns. In evolutionary terms, some
variants were functional—they affected the performance of a device—whereas
others were not.

Schiffer used the vacuum-tube radio as an example of stimulated variation,
tracing variation in radios as it occurred in the invention, commercialization, and
adoption phases. He described how stimulated variation affected the commerciali-
zation process, as seen in Fig. la, which shows changes in the frequency of US
companies manufacturing vacuum-tube radios for the home market from 1920 to
1955. Note the two dramatic increases in variation, one beginning in 1922 and the
other in 1945, after World War II. Schiffer sees these as examples of stimulated
variation—the first burst resulting from the advent of commercial entertainment
broadcasting, in November 1920, and the second burst resulting from electronics
companies seeking new product markets after wartime production ceased.

US portable radios were another example of stimulated variation, at a scale
embedded within the radio category. In 1939 and 1940, there was a dramatic increase
in the variety of portable models offered to consumers (Fig. 1b). This was caused not
so much by consumer demand but by a changed selective context of radios and
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Fig. 1 Vacuum-tube-radio
data used by Schiffer (1996) 200
in his analysis of stimulated
variation: a changes in the
frequency of US companies
manufacturing radios for the
home market, 1920-1955;

b changes in the frequency of
portable-radio models manufac-
tured and sold in the United
States, 1920-1955
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established radio-manufacturing companies, which saw an opportunity for Ameri-
cans to hear war news anywhere.

Although the companies are the ones to introduce new variants, it is consumers
who select them—consumers are the selective context—as sales grow and the
technology is adopted. In 1953, nearly two million vacuum-tube portable radios
were sold in the USA. Late in 1954, the first transistor portable radio was
commercialized, and others were rapidly brought to market. Even though transistor
radios were expensive at first, consumers quickly selected against the tube-based
portables and, in less than 7 years, only transistor radios remained on the market
(Schiffer 1991). Schiffer stated the adoption process is also an important source of
variation, as consumers become inventors, trying out their new “toys” in new
activities. The result is an expansion of activity variation, which can contribute to
stimulated variation in processes of invention and commercialization.
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The Cascade Model

Schiffer’s (2005a) cascade model posits that during the development of a CTS,
emergent performance problems are recognized, which stimulates sequential spurts
of invention until the resulting object(s) contributes to an acceptable solution. Users
then encounter new performance problems, which stimulate more inventive spurts,
and so on. The result is a series of invention cascades, each stimulated by an
immediate performance problem during the life history of a CTS. As variants of a
particular technology, the inventions will necessarily differ in terms of performance,
which affects their adoption. Inventions judged unsuitable are not replicated; some
that look promising may be adopted only sporadically; and those regarded as
successful are replicated and adopted widely. In some cases, no suitable variants are
invented, which terminates or radically redirects the CTS.

Cascades occur at every scale of technological object, from part to subsystem. In
complex CTSs, one often finds a hierarchy of invention cascades, such as portable
radios within the cascade of radios. For another example, in the 1890s, with
increased interest in automobile design, there was a cascade of prototype vehicles
using steam, electricity, gasoline, compressed air, and even springs (Hiscox 1900).
Manufacturers quickly selected in favor of gas, steam, and electric. Inventors in turn
created myriad alternative designs for specific parts, assemblies, and so on for each
vehicle type (e.g., ignition and cooling systems in gasoline automobiles, batteries
and controllers in electric cars, and boilers and condensers in steam-driven cars).
During the next two decades, the symbolic functions of gasoline and electric cars
also stimulated invention cascades in body styles and interior furnishings (Schiffer ez
al. 1994; Mom 2004). As in the case of the automobile, inventors may initially adopt
different approaches to achieving a CTS’s core performance characteristic(s), leading
to diverse technological objects at many scales. As we know, gasoline eventually
won out with cars, but there was an element of historical contingency to this, and it
could easily have gone in another direction (e.g., Beinhocker 2006).

The Transmission of Innovation

Schiffer’s description of CTSs and cascades of invention is quite compatible with
studies of cultural transmission. Part of this field is the study of cumulative cultural
evolution (e.g., Tennie et al. 2009; Enquist et al. 2010), which asks, given that
knowledge has been passed down (with occasional variation) from generation to
generation throughout much of prehistory and history, what is it that has driven the
explosion of technological complexity? Generally speaking, human knowledge has
intensified exponentially in the millennia since the Neolithic, so that what exists
today might be eight or nine orders of magnitude more than what existed even
10,000 years ago (Beinhocker 2006). Presumably this has occurred through the kind
of positive feedback that Schiffer describes, in cascades of invention that are not
only pruned by the immediate selective contexts but also filtered by the longer term
process of knowledge accumulation. Over the generations, technological knowledge
that becomes irrelevant (e.g., hunting implements for extinct prey) will not be
retained. In addition, even technologies that are superbly adaptive can be lost if they

@ Springer



Stimulated Variation and Cascades 315

become difficult to pass down, particularly when specialist knowledge becomes lost
over the generations as a result of a decreasing population size—either in absolute
terms, as in prehistoric Tasmania (Henrich 2004), or in effective terms, as when trade
networks break down.

The point is that the core process of every prehistoric CTS development is the
transmission of information between people, enabled by the extraordinary human
ability for social learning, defined as learning by observing or interacting with others
(Heyes 1994) as opposed to learning independently. Multiple animal species are able
to learn (Laland and Reader 2010), but only groups of humans—more accurate and
complex social imitators than any other animals—can substantially accumulate
socially learned information over generations. Not all learning is social, however. As
we will see, social learning spreads behaviors, but it depends on individual learning
to generate them. This is why we find it necessary to distinguish between invention
and innovation. We discuss each kind of learning below.

Social Learning

Humans use social learning for a variety of adaptive reasons (Richerson and Boyd
2000; Kameda and Nakanishi 2002; Reader and Laland 2002; Laland 2004; Rendell
et al. 2010; Bentley and O’Brien 2011; Henrich and Broesch 2011). If we accept that
large brains evolved through selection for complex social abilities (Dunbar and
Shultz 2007a, 2007b), then it follows reasonably that behaviors usually become
popular in human communities by means of social learning (Whiten et al. 1999;
Laland 2004; Whiten 2005; Laland and Galef 2009; Laland and Reader 2010;
Reader and Biro 2010; Laland ef al. 2011). Humans learn their language, morals,
technology, how to behave socially, what foods to eat, and most ideas from other
people. This process is the basis for human culture, organizations, and technology
(Whiten et al. 2011). Humans continue to “learn things from others, improve those
things, transmit them to the next generation, where they are improved again, and so
on,” and this process continues to lead to the “rapid cultural evolution of superbly
designed adaptations to particular environments” (Boyd and Richerson 2005, p. 4,
emphasis in original). Human cultural transmission is thus characterized by the so-
called ratchet effect, in which modifications and improvements stay in the population
until further changes ratchet things up again (Tennie et al. 2009; Tomasello et al.
1993).

Much of the time, social learning is an effort to replicate another’s behavior
accurately without embellishment. Humans have a proclivity for imitation right from
infancy (Gergely et al. 2002; Kovacs ef al. 2010). It is a powerful adaptive strategy
that allows others to risk failure first (Henrich 2001; Laland 2004): Let others filter
behaviors for you and pass along those that have the highest payoff (Rendell, Boyd,
et al. 2011). As British economist John Maynard Keynes (1937, p. 214) put it,
“Knowing that our own individual judgment is worthless, we endeavor to fall back
on the judgment of the rest of the world which is perhaps better informed. That is,
we endeavor to conform to the behavior of the majority or the average. The
psychology of a society of individuals each of whom is endeavoring to copy the
others leads to what we may strictly term a conventional judgment” (emphasis in
original). The benefits of copying apply equally to inventors and commercial firms

@ Springer



316 O’Brien and Bentley

interested in maximizing profits (e.g., Shenkar 2010) and to prehistoric potters
attempting to make functional vessels (e.g., Eerkens and Lipo 2005).

Copying others is itself a set of competing strategies in that one might
preferentially copy based on identifying skill level as the main criterion (copy those
who are better at something than you are, copy good social learners, copy those who
are successful), whereas others might base their decisions on social criteria (copy the
majority, copy kin or friends, copy older individuals). Figure 2 presents a simple
taxonomy of social-learning strategies that involve copying. The various factors that
can affect one’s choice of whom or what to copy are often referred to as “biases,”
and hence, the term “biased learning” is commonly used as a synonym for certain
social-learning strategies (Boyd and Richerson 1985).

Of more importance is the difference in the effects of copying based on selection
for knowledge or a skill level as opposed to copying based on random social
interaction. The best example of this difference comes from the computer-mediated
tournament of learning algorithms held at St Andrews University in 2009 (Rendell et
al. 2010; Rendell, Boyd, et al. 2011). Before the tournament, many expected the
winning strategy to be some combination of majority individual learning (see below)
supplemented by some social learning (Pennisi 2010). In fact, the most successful
strategies relied almost exclusively on social learning, even when the environment
was changing rapidly. The winning strategy, called “discountmachine,” copied
frequently and was biased toward copying the most recent successful behavior it
observed. This, at last, is consistent with how we view the world—as a highly
interconnected and distributed collection of minds, the power of which for social
transmission is only now becoming apparent (Bentley et al. 2011). Our view mirrors
that of Rendell, Boyd, et al (2011): Copying confers an adaptive plasticity on
populations, which allows them to draw on deep knowledge bases in order to
respond to changing environments rapidly. High-fidelity copying leads to an
exponential increase in the retention of cultural knowledge—the “ratcheting effect”
mentioned above.

Social Learning
Heuristics and Biases

Content Context
| |
Model-based Biases Frequency-dependent Biases
Prestige Success Similarity Others  Conformity Rarity

Fig. 2 Taxonomy of social-learning heuristics and biases (after Henrich and McElreath 2003). Content
bias includes such things as pre-existing psychological beliefs that one tool is superior to another or that
using one tool over another conforms to religious beliefs. Other forms of model-based biases are possible,
including age, sex, and ethnicity
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Individual Learning

As opposed to learning socially, one can learn individually or asocially. This is a
slow process, wherein an individual modifies existing behaviors through trial and
error to suit his or her own needs. Perhaps, a learner obtains the basic behavior from
a parent or master and then begins to tinker with it with no influence from other
people. He or she then passes the behavior on to others. Boyd and Richerson (1985)
refer to this as “guided variation.” The guided-variation model shows that, in the
absence of selection for a particular trait, a population will move toward whichever
trait is favored by people’s individual-learning biases. This occurs even when the
strength of guided variation is weak (Mesoudi 2011a).

Guided variation is featured, somewhat incorrectly, in Schiffer’s (2005a)
discussion of the cascade model, where he talks about the role of stimulated
variation:

Unlike “directed mutation” (Dawkins 1982, p. 112) and “guided variation”
(Boyd and Richerson 1985, pp. 94-98), which more than flirt with Lamarckian
mechanisms of change, the process of stimulated variation in no way obviates
selection; after all, every variant produced during an instance of stimulated
variation can be selected against. Selection thus retains its Darwinian role, but
variety-generation becomes central to evolutionary inquiry, the study of its
mechanisms and processes far from trivial.

Here, Schiffer greatly undersells his point with respect to guided variation and its
attendant process, individual learning. Guided variation does not just flirt with
Lamarckian mechanisms; it is Lamarckian, despite repeated claims to the contrary
(e.g., Blackmore 2010). How could it be otherwise? Whenever a person is guided in
developing a behavior—a skill, for example—and then passes it on, this is a case of
Lamarckian inheritance. Where does a person learn a behavior such as a skill? It could
be from a person at random—not very likely—or, more likely, as noted above, from a
parent or master, which is how “traditions” are created (O’Brien et al. 2010). The
adopter can then pass along the skill or tool unaltered, or he or she can experiment and
make alterations before passing it on. Regardless, this is a Lamarckian process.

This form of learning is called “unbiased” (Boyd and Richerson 1985; Henrich
2001) because at the population level it approximately replicates the distribution of
behaviors from the previous generation. After acquiring a behavior or tool, an
individual can obtain environmental information about the relative payoffs of
alternative skills or tools. If the difference in payoffs is clear, the individual adopts
the behavior indicated by the environmental information. If not, the individual sticks
with the behavior acquired through unbiased cultural transmission (Henrich 2001).
Thus, Boyd and Richerson’s (1985) “guided variation” has two equally important
components: unbiased transmission and environmental (individual) learning.
Henrich (2001) uses the term “environmental learning model” to include both the
individual-level learning process, which may occur many times per generation, and
its transgenerational counterpart, guided variation (unbiased transmission and
individual learning).

Schiffer (1996), in describing how variation is generated, makes it sound as if
innovation is the result of stimulated variation. This decidedly is not the case. There
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are only two ways in which variants can be created: random (copying) error and
individual learning (experimentation). As Mesoudi (2011a) points out, individual
learning does not need variation in the population to work, nor does its strength
depend on the amount of variation present. A person might be “stimulated” by what
is going on around him or her—Ilots of variants being created, for example—but this
is an unnecessary condition for individual learning to occur.

Referring back to Schiffer’s quote above, in which he states that “the process of
stimulated variation in no way obviates selection,” we emphasize that the production
of variation has nothing to do with either selection or diffusion. The problem here is
conflation of selection with diffusion. A trait can spread, and even become
predominant in a population, as a result not of selection but of drift. The
archaeological and ethnographic records are rife with examples (e.g., Neiman
1995; Eerkens 2000; Bentley et al. 2004; Eerkens and Lipo 2005; Buchanan and
Hamilton 2009; Hamilton and Buchanan 2009). Stimulated variation affects the
amount of variation that is produced, but not how variants diffuse. Let’s see what
Schiffer (1996, p. 655) had to say on the subject of stimulated variation and
evolution:

Variation in a population at one point in time is a consequence of both prior
selection and variety-generating processes (e.g., invention and borrowing).
Study of the latter is clearly crucial, for the creation of new variants in cultural
populations occurs commonly and sometimes at high rates. Because selection
operates on variation, the state of variation at one point in time immediately
constrains the outcome of selection. . . . Thus one cannot explain evolutionary
change in specific cases without documenting and accounting for large and
rapid changes in the available variation. New variants can arise through an
expansion of inventive activities in existing behavioral components, through
the proliferation of behavioral components undertaking inventive activities, or
both.

We agree with all but the fourth sentence; we do not have to document “large and
rapid changes in the available variation” in order to explain evolutionary change in
specific cases. “Large and rapid changes” may not even be present. There may be no
change in available variation, and evolution can still occur, either through selection or
drift. Likewise, there may be small and slow changes, and evolution can occur. Finally,
there may be large and rapid changes, yet selection plays no hand in sorting it.

Selection, by definition, is a sorting process that reduces variation. Again, it is
not, as Schiffer avows, a creator of variation. Selection is also a population-level
process, not an individual-level process. At any point in time, the amount of
variation affected by selection will be less than the potential variation that would be
present in its absence. This is as true for parts of the extended human phenotype—
here, tools—as it is for any genetically driven trait (O’Brien and Holland 1995). As
many ways as there are to make tools that work, there are far more ways to make
tools that do not work (VanPool et al. 2011)—especially “tools that are hard to learn
to make, and easy to screw up” (Henrich 2006, p. 776). In other words, selection
cannot create variants; it can only operate on a pool of existing variants by
decreasing the relative frequency of those that do not work, often to the point of
extinction.
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Patterns of Diffusion

Individual learning and social learning create different patterns as they transmit
innovations. One common pattern is the familiar S-shaped diffusion curve—labeled
“social learning” in Fig. 3—which plots the cumulative frequency of adopters of a
particular trait over some set period of time. The “S” can be flatter or steeper
depending on the rate of adoption. A curve with a long tail on the left, for example,
tracks a slow adoption of a trait. The slowness in uptake is, in the most parsimonious
social-learning model, a result of the low initial frequency of a variant in the
population and thus fewer opportunities for people to encounter it and adopt it. The
sudden change in magnitude function of a curve—the point at which we see an
adoption take off—occurs through the same social-learning® process; the cumulative
rate depends only on the number of adopters choosing that particular variant at any
one time.

Individual learning does not create S curves; instead, it creates r-shaped
decelerating curves (Bass 1969; Henrich 2001). In contrast to the lead-in for S
curves, » curves begin at their maximum growth rate (at 7=0) and then approach their
maximum frequency asymptotically (Fig. 3). Such curves may characterize the
response to a major event, such that the population gets the information universally
and more or less instantly rather than through social exchanges (Bentley and
Ormerod 2010).

These curves can also describe a long-term intergenerational adoption of a
behavior. As Henrich (2001) points out, » curves describe, for example, the
cumulative adoption dynamics for the spread of milk bottle-opening behaviors
among pigeons (Fisher and Hinde 1949; Lefebvre and Giraldeau 1994), the spread
of potato washing among Japanese macaques (Kawai 1965), and the early phase of
adoption of hybrid corn in the American Midwest (Ryan and Gross 1943). In these
cases, the r curves reflect individuals in one generation discovering a beneficial new
behavior (in their perception) and subsequently transmitting those behavioral outputs
to their offspring, including intellectual offspring such as apprentices. With r curves,
cultural transmission simply replicates the existing distribution of behaviors, beliefs,
and so on. The actual driver of change is in the decision-making process, as people
make cost—benefit evaluations based on low-cost experimentation as to whether to
modify a behavior (Gladwin and Butler 1984; Henrich 2001). This is what leads to
the steady uptake in the » curve as seen in Fig. 3. It is steady because it does not
matter whether a behavior is common or not.

Learning Strategies Are Not Static

In the real world, r curves are relatively rare, given that they are sparked by a new
discovery or rare event, whereas S curves are common. For Henrich (2001), this
strongly suggests that biased cultural transmission—specifically, conformist-biased
transmission (Fig. 2)—dominates the diffusion process. Conformity is unnecessary,

* There is some evidence that S-shaped curves can arise through a number of plausible asocial processes
as well, even if the assumption of a well-mixed population with no spatial heterogeneity in resources is
accepted (Hoppitt et al. 2010). This possibility does not affect discussion here.
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however, for S curves to occur. In marketing science—like archaeology, a study of
change in behaviors through time—a classic model yielding S curves is the Bass
(1969) diffusion model. In the Bass model, individuals may adopt a new behavior,
such as buying the latest portable radio, when they encounter someone who has
adopted it already. This is not conformity; it is just learning about the behavior
socially. The reason that the Bass model yields an S curve rather than an » curve is
that individuals do not learn about the new behavior until seeing someone else with
it (Kandler and Steele 2010).

Models of conformist transmission often implicitly assume that individuals can
sense how popular a behavior is overall in the population. This assumption is fine for
small groups but unrealistic for large populations, where it can be better to assume
individuals have only local, imperfect knowledge (Mesoudi and Lycett 2009). If we
assume the latter, conformity at the individual scale can render the spread of new
behaviors punctuated and unpredictable at the population scale, as conformity
renders the social network poised for a cascade that still needs a trigger at the right
time and place to start it (Kauffman 1995; Gladwell 2000; Watts 2002; Bentley et al.
2011).

Of course, for real-world data, the difference between S and r patterns of adoption
is best seen along a continuous spectrum (Bentley et al. 2011). After all, there is no
good reason for thinking that we do not employ a mix of strategies in everyday life,
using individual learning for one behavior and social learning for another. At the
population scale, the Bass model conveniently has parameters for both decision type
so that real-world patterns can be characterized along this spectrum (e.g., Bentley
and Ormerod 2010).

Characterizing the patterns along the S— spectrum at the population scale can be
used to complement more detailed investigations at the individual scale. Both scales
are implicated when Henrich (2001, p. 1008) poses four questions: “How can
environmental, cost-benefit learning account for the empirical phenomena of long
tails and takeoff points? Why do diffusional processes sometimes begin so slowly
and finish so rapidly? Why doesn’t this occur at other times? Why do some
behaviors have threshold adoption frequencies at which they begin spreading on
their own?” There is a two-part answer to these questions. First, at the population
level, is the size of the population involved in the learning matters. Second, at the
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individual scale, humans use a mix of learning strategies; sometimes, we learn
individually—we produce information—and other times we learn socially—we
scrounge information. The question is, when should we do one as opposed to the
other, and how does the shift affect fitness?

Numerous studies have examined this question (e.g., Giraldeau et al. 2002;
Kendal et al. 2009), many building on Rogers’ (1988) earlier modeling. Rogers
proposed that environmental change will lower the fitness of a group comprising
individual and social learners because the latter cannot track new changes in the
environment and thus will copy outdated information from each other (for reviews,
see Enquist ez al. 2007; Rendell, Fogarty, et al. 2011; Rieucau and Giraldeau 2011).
If the environment does not change, group fitness increases because social learners
are adopting optimal behaviors, and it costs less to scrounge than to produce, unless
producers charge a price for copying. Mesoudi (2008, 2010), following on the work
of Mesoudi and O’Brien (2008a,b), took a different tack, holding the learning
environment constant but manipulating the landscape so that it did not remain
unimodal. Mesoudi found that individual learning was significantly more adaptive
on a unimodal adaptive landscape, where there is but a single optimal design or
behavior, than on a multimodal adaptive landscape, where there are multiple locally
optimal designs or behaviors of different fitness. On unimodal landscapes, simple
reinforcement learning will always lead to the best possible design or behavior,
irrespective of starting point. By contrast, on multimodal landscapes, such as the one
in Fig. 4, individual learners can become trapped on locally optimal but globally
suboptimal peaks, reducing the mean fitness of the population. The social-learning
strategy of “copy successful individuals” allows individuals to jump from locally
optimal peaks found by means of individual learning to the globally optimal peak
located by a more successful member of the population (Rendell et al 2010;
Rendell, Boyd, et al. 2011). Mesoudi (2008) found that populations of flexible
learners outperform both populations of pure individual learners and mixed
populations of pure individual learners and pure social learners.

These findings are important to innovation research because actual cultural
evolution, as opposed to what we model, takes place on multimodal adaptive
landscapes (Boyd and Richerson 1992; Kauffman 1995; Mesoudi and O’Brien
2008a,c), where there are several (if not more) stable, locally optimal designs and
behaviors of varying fitness. Almost any tool, especially a complex one, is a result of
multiple trade-offs between and among competing demands for performance, as
Schiffer (1996, p. 654) noted: “Selection pressures in the immediate selective
context lead to artifacts that embody design compromises of many kinds, as in trade-
offs between performance characteristics pertaining to manufacture, use, and
maintenance processes...or even between activities within a given process (Schiffer
and Skibo 1997). Compromises are necessitated because, ordinarily, no single design
can maximize an artifact’s entire set of activity-specific performance characteristics.”

Echoing Dennett (1995) and Kauffman (1995), Mesoudi (2010) suggests that
different locally optimal peaks in a technology’s adaptive landscape can be seen as
different potential inventions. Conversely, innovations would be peaks at which the
majority of actual artifacts in a population can be found, which is not necessarily the
highest, globally optimal peak. Individual learners explore this adaptive landscape
by means of a random walk, leading to the discovery of one or more locally optimal
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Fig. 4 Imaginary fitness landscape model created by intersections of individual states of two characters
(adapted from Van de Peer et al. 2009): a and b the landscape at #=0; ¢ and d, the landscape at a later time,
say t=5. The black dots represent agents that occupy the peaks in the two-character technospace,
representing niches in which that particular combination of character states is advantageous. At =0, an
agent (the white dot) is seen moving to an unoccupied peak. At =5, a new adaptive peak has opened up,
represented by the arrow in ¢. None of the existing agents has the evolutionary potential to make the jump
and thus fill this niche, but over time one or more might be able to develop the necessary innovations

peaks or inventions. Social learning that is biased in some way (e.g., copy the
successful) then allows people to jump across low-fitness valleys to a higher peak
found by a more successful individual, making this peak/design the innovation
(Kauffman 1995; Mesoudi 2010). The more peaks (alternative stable designs) on an
adaptive landscape, the more difficult it might be to find the highest one.* Similarly,
the greater the relief on the fitness landscape, reflecting fitness difference among
alternative designs, the easier it is to identify the highest peak/best design by means
of biased transmission, and the more adaptive that biased transmission should be
relative to individual learning.

4 If indeed there is one. The challenge of this approach is in defining the full landscape of possible
inventions. Ancient Polynesians built ocean-going canoes, but they could not have invented jet skis. We
might wonder, though, what else was on the Polynesian design landscape that they might have ventured
upon?
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Two other factors might be important. At the individual scale, when individual
learning is costly, it pays to be a scrounger, and innovations should spread by social
learning. Although social learning is advantageous for most, it relies on the
remaining proportion of individual learners. Without any individual learners to
constantly sample the environment—to produce information useful to the group—
social learners cannot track environmental change (Henrich and McElreath 2003).
They are simply “buying” whatever happens to be on the shelf. This could have
deleterious effects on all individuals. Note that even in the most successful strategies
that came out of the tournament of learning algorithms held at St Andrews
University, where copying predominated, there had to be a source of new variation
present, either through copying error or occasional innovation (Rendell, Boyd, ef al.
2011). Without a source of variation, agents simply copy themselves into stasis—
potentially a recipe for disaster in the face of a changing environment.

At the population scale, the larger the population, the more likely it is that
someone will find the highest fitness peak through individual learning (Henrich
2010), resulting in higher fitness in the entire population affer cultural learning takes
over (Mesoudi and O’Brien 2008b; Mesoudi 2010). This is why population size is
now being viewed as a heretofore-unappreciated driver of innovation, from the
Upper Paleolithic Revolution (Powell et al. 2009) of 40,000 B.P. to the information
cascade that confronts us today (Bentley and O’Brien 2011; Bentley et al. 2011). It
also is recognized as a driver of cultural loss (Henrich 2004)—too few minds around
to keep specialized knowledge alive. Of course, the minds must communicate in
order to create this “collected mind” effect. Unconnected individuals are irrelevant to
learning and the collective storage/retrieval of information (Bentley and O’Brien
2011).

Let us look at the switch from individual learning to content-biased learning using
an example we mentioned earlier, the cumulative percentage of farmers in two lowa
communities who adopted hybrid seed corn between 1926 and 1941 (Ryan and
Gross 1943). Notice in Fig. 5 the extremely long tail at the left, signifying slow
adoption, followed by a significant upward shift in 1933-1934 and a peak in 1936—
1937. It took 9 years for the relative frequency of hybrid planters to reach 20%, but
only six more years for it to reach fixation at 99%. What might account for this
curve, similar to those studied by Schiffer? Several factors undoubtedly kept the
adoption rate low in the beginning, including the fact that expensive hybrid seed
corn could not reproduce (Lowery and DeFleur 1995). Early on, a few farmers
experimented with the hybrid corn, but this guided variation yielded almost no shifts
in behavior until enough farmers began experimenting with it that it finally reached a
point where social learning took over.

Henrich (2001, p. 1003) sees this transition as a result not only of social learning
generally but of conformist transmission (Boyd and Richerson 1985) specifically,
where “individuals use the frequency of a trait as an indirect indicator of its worth.
Hence, a trait’s frequency inhibits its diffusion when it is rare but encourages the
diffusion once the trait becomes common.” Given that S curves do not require
conformity, however, the question is to what degree conformity was inherent in the
uptake of hybrid corn, as opposed to merely the growing visibility of it among
fellow farmers. The sudden start of the cascade suggests conformity, but perhaps this
is more in the local-network sense of Watts’s (2002) model.
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Fig. 5 Diffusion curve showing the cumulative use by year of hybrid cormn in two lowa farming
communities, 1926-1941 (data from Ryan and Gross [1943]; curve after Henrich [2001]). This diffusion
curve is a prototypical example of a “long-tailed” S-curve. The dotted lines mark the point on the curve
with the highest rate of change

As hybrid-corn users became more prevalent in the lowa communities (Fig. 5),
the cost of the variant also decreased, but we would argue that the upswing in
adoption that occurred in the 1933-1934 period was not so much a result of reduced
price but rather of there being enough successful hybrid-corn users around that other
farmers made the decision to switch. The adoption of hybrid corn changed from an
individual-level to a population-level decision. All of the farmers, except the first,
acquired the invention by imitating high-payoff farmers. This means that an entire
population of social learners exploited the superior cost—benefit information of just
one person (Henrich 2010).

Discussion

Research on individual and social learning provides the link between Schiffer’s
stimulated variation and cascade models and the larger spread of complex
technological systems (CTSs). Many of us picture inventors as solitary individuals,
working late into the night at the lab bench, tinkering with this, adjusting that, until
the long-hoped for Eureka! moment arrives. It could be Samuel Morse experiment-
ing with telegraph keys or an lowa farmer trying to see how many more bushels of
corn he will get using hybrid varieties. There is a rich literature on the conditions
under which people will experiment, which usually concludes that inventiveness
increases in times of economic crisis (e.g., Fitzhugh 2001). We wonder, though,
about the accuracy of this widely held conclusion. The St Andrews tournament, for
example, demonstrated that unlike previous theory that suggested that a reliance on
social learning can sometimes hinder the adaptive tracking of changing environ-
ments (e.g., Rogers 1988; Feldman ez al. 1996), heavy reliance on social learning did
not compromise the ability of agents to adjust to shifting environments (Rendell,
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Boyd, et al. 2011). The range of behavior patterns increased, and there were more
even distributions of behaviors—meaning that no single high-performance behavior
was persistently optimal—but there was no increase in individual learning. Like
Rendell and colleagues, we suspect that this reflects the fact that agents in the
tournament were more biologically “real” than agents in other models. This means,
simply, that humans can switch rapidly to an alternative high-performing behavior
when an environmental change reduces the payoff of the current behavior.

Schiffer defines stimulated variation as a consequence of prior selection,
invention, and borrowing. We would agree with the latter two variables, but as we
noted previously, variation cannot be created by selection; it can only be reduced by
selection. Variants start life as inventions, through individual learning. They can be
the result of an inventive “spark,” or they can result from copying error. Social
learning, on the other hand, is selection; it does not create, it only sorts the relative
frequency of variants across a population. As Mesoudi (2011a) argues, the more
variation there is in the population, the stronger the learning bias (selection) should
be, although this may be overwhelmed by information overload in the modern
world, with millions of possible consumer choices (Bentley et al. 2011).

Schiffer (2005a) is interested in how much variation is “stimulated” before a
cascade takes place. The individual-learning part of the tail of an S curve can be long
or short, depending on the learning costs involved and the number of connected
minds in a population.” In theory, the more minds there are, the greater the flux of
new variants (Henrich 2010). Likewise, the higher the cost/risk of individual
learning, the more copying there should be (Fitzhugh 2001). Figure 6 shows
adoption curves for several CTSs. Some curves, such as those for cell phones and
personal computers, have extremely short tails; others, such as those for televisions,
radios, and VCRs, have moderately long tails; and still others, such as those for
home electricity and cars, have long tails. Regardless, it is not difficult to recognize
the onset of cascade events.

In Schiffer’s view, variation is stimulated by other minds working on similar
problems. We agree, but only provided that each mind knows what the others are
doing, if even in a rough sense. For example, despite the secrecy that cloaks most
inventive enterprises, especially highly commercialized ones, inventors have at least
a broad feel for what the competition is doing. Depending on the stakes involved in a
discovery, “stimulation” can be heightened simply by luring more minds into the
contest. There could be, for example, dozens or even hundreds of inventors
wandering across the technological landscape looking for optimal peaks, leaving a
trail of variants behind them. Depending on how complex a CTS is, inventors will
land on any number of peaks, many of which will be locally optimal but not globally
optimal.

Take, for example, the case of locomotive spark arrestors, which were placed in
the smokestacks of nineteenth-century wood-burning American locomotives to
control the escape of live sparks. Despite the severity of the problem—trestles,
homes, passengers’ clothing, and sometimes entire countrysides were being set

5 There is an extensive literature in the social sciences on computing the costs of learning. For an early
example, using utility curves, see Friedman and Savage (1948). For a useful summary from the
perspective of human behavioral ecology, see Fitzhugh (2001).
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Fig. 6 Adoption curves for seven modern technologies, plotting percentage ownership by US households
versus number of years since invention (adapted from Forbes, July 7, 1997)

ablaze (White 1997)—and the financial incentives that were in place, no truly
effective arrestor was ever produced, despite the existence of over 1,000 patented
devices (Fig. 7). This is an excellent case of Schiffer’s cascade model: Emergent
performance problems are recognized as shortcomings in a technology’s constituent
interactions, which stimulates sequential spurts of invention until one or more of the
resulting objects contribute to an acceptable—here barely acceptable—solution. Put
in terms of fitness landscapes, and with respect to spark arrestors, there was no
optimal peak in the pure sense of the word, only a number of barely “adequate”
peaks, none of which were readily apparent.

We can model this process as in Fig. 8, which shows an imaginary design space at
four points in time, with each cell representing a potential solution to, say, the spark-
arrestor problem. Figure 8a shows the number of potential solutions that individual
learners found at time zero (z=0). Figure 8b shows the number of solutions at =20.
More solutions have been found, but some previous solutions have disappeared. In
reality, they probably were not workable in the first place, although perhaps they
were patented anyway. Figure 8c shows the number of solutions at /=25. Not only
have many more solutions been found, they were discovered in a much shorter
period of time than the number discovered between =0 and =20. In Fig. 8d, which
shows the number of variants at /=40, the frequency has grown, but the rate of
increase has slowed considerably, and social learning (selection) is poised to begin
pruning the number of variants. The time period between =20 and ¢=25 is of
particular interest because it is there that we see the sharp increase in variation. What
caused that cascade, or tipping point? The answer, of course, is case specific. In the
case of radios, sociopolitical factors, including war, helped drive the variation that
Schiffer (1996) reported. In other cases, it could also be the economic riskiness of
the landscape, where guided variation—experimentation and invention—is the rule
for companies trying to establish themselves, whereas dominant firms are more risk
averse (Cosh et al. 1996; Fitzhugh 2001).
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Fig. 7 Fifty-seven of the 1,000-plus locomotive spark arrestors patented in the United States prior to 1860
(drawing from the Baldwin Locomotive Works, Philadelphia; reproduced from White 1997). Sparks were
a dangerous by-product of wood-burning American locomotives, but the problem was hard to fix.
Smokestacks needed an unobstructed draft to work properly, and an effective spark arrestor obstructed the
draft. Even the most popular arrestors were only partially successful in catching live sparks

Behavioral economists and complexity theorists use the same concepts, and they
offer exciting insights. Rather than viewing technological invention traditionally as a
probabilistic search within a fixed population of possibilities, newer models consider
“dynamic fitness landscapes” (e.g., Kauffman 1995), in which innovation (adoptions
by other agents) affects the landscape of invention (potential adaptiveness of current
or new agent behavior). Kauffman et al. (2000), for example, extended the standard
search model by introducing a technology landscape into the modeling framework.
Their technology landscape consists of (1) a profit function that assigns a real-value
number to each technology in the space of possible technological configurations and
(2) a metric structure over the space of technological possibilities that measures how
close or distant each is from the other. Locations in the landscape correspond to
different configurations for a firm’s production recipe. Peaks and valleys represent
local maxima and minima for the labor efficiency associated with each production
recipe. The “ruggedness” of the landscape is in turn determined by the landscape’s
correlation coefficient. This is exactly what we show in Fig. 4. Kauffman and
colleagues label a firm’s search process an adaptive walk. Adoption of a new
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Fig. 8 An imaginary design space at four points in time, with each cell representing a potential solution to
a technological problem (adapted from Gavrilets 1997): a the number of potential solutions that individual
learners found at time zero (#=0); b the number at /=20; ¢ the number at r=25; and d the number at t=40.
Note the rapid increase in potential solutions between /=20 and =25, followed by a slowdown. The
period of maximum change would be somewhere between those two points in time. Note also that designs
can disappear between points in time

technology is called an “uphill step” because the firm has changed its technological
configuration and increased its profitability. In our terms, it has become more “fit.”

Kauffman and colleagues (e.g., Kauffman 1995; Kauffman ez al. 2000; see also
Stuart and Podolny 1996; Lobo and Macready 1999) anticipated the conclusions of
learning researchers (e.g., Mesoudi and O’Brien 2008a,b; Lake and Venti 2009;
Mesoudi 2010): Searchers on a rugged technological landscape are likely to get
stuck on a local optimum or even a technological dead-end, often depending quite
sensitively on exactly where the search was started. A technological optimum may
not even exist on the design landscape (Kane 1996), and even when there are
ephemeral, optimal solutions, it is never possible to completely map out a dynamic,
complex design space, and optimal peaks can become suboptimal with the behavior
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of other agents. A perfect example of this is the aforementioned locomotive spark
arrestor.

Conclusions

By any measurement, Michael Schiffer has developed a rigorous approach to
analyzing complex technological systems. Here, we have focused on two processes
he identified as fundamentally important to the evolution of CTSs, stimulated
variation and the cascade model. Interestingly, “stimulated variation” harks back to a
letter to Nature in March 1895 by W. T. Thiselton-Dyer of Royal Gardens, Kew, UK,
who worried that in his haste to get through a lecture he gave to the Royal Society,
he had compressed some points, one of which regarded a statement by Charles
Darwin (1868, p. 250) that “organic beings, when subjected during several
generations to any change whatever in their conditions, tend to vary.” Thiselton-
Dyer (1895, p. 459) then offered that “a change in the external conditions, otherwise
the environment, will provoke some variation in the organism, which 1 may call
stimulated variation” (emphasis in original). Darwin and Thiselton-Dyer were
referring to biological responses by nonhuman organisms, but the same can be said
for the process that Boyd and Richerson (1985) and others have referred to as
“guided variation” and its two components: unbiased transmission of behaviors and
environmental scanning, the latter of which assists a learner in deciding whether or
not to modify a behavior before it is passed on.

The related work of complexity theorists poses new questions for archaeological
research and Schiffer’s model: How is the invention process affected by others
exploring the same technology landscape? If local searches are more cost efficient,
how often did past technology get “trapped” on suboptimal technological peaks? In
what archaeological cases did people use their knowledge of the physical
environment to direct their conceptual search of the technological design space
(“hill-climb”), and when did they just “muddle through” (Lindblom 1959)?

These questions depend on the complexity of the design space, which is affected
not only by the complexity of current technologies (Arthur 2009) and the cost of
production (e.g., Kandler and Steele 2010) but also by population size. Social
learning, as a process of transmission of knowledge between minds, is inherently
subject to population effects, and anthropologists studying technological evolution
are increasingly considering population size explicitly (Henrich 2004; Powell ef al.
2009; Kline and Boyd 2010; Rendell, Boyd, et al. 2011). As Schiffer (1996)
considered, how many variants will be produced that go nowhere because the
effective population is too small to find out about them and reproduce them? If
critical population thresholds are crossed, then biased transmission—selection—can
begin sorting the variants, as in the European Upper Paleolithic (Powell ez al. 2009)
or in prehistoric Polynesia (Kline and Boyd 2010). As Henrich (2010, p. 111)
concluded:

Invention and innovation are fundamentally evolutionary processes. Given that

nearly all inventions build on existing ideas and often involve the
recombination of existing concepts, methods, or materials, often fortified or
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integrated with a dose of lucky mistakes or happenstance, the overall
inventiveness of a social group or population depends on the number of
individual minds available to create recombinations, generate insights, and get
lucky, as well as on their cultural interconnectedness....This implies that the
more minds in one generation, the more novel recombinations, insights, and
lucky mistakes will exist for the next generation to recombine, refine, and
extend across domains. The more innovations in existence, the greater the
opportunities for recombinations and the more inventions are possible.
Because the elements of any recombinant are acquired by learning from
others, the more individuals one can potentially learn from, the greater the
opportunities for creating novel recombinant inventions.

This “distributed mind” concept is increasingly commonplace in our modern,
wiki-media era of computers and information storage (Surowiecki 2004), and we are
seeing more archaeological research into how humans have stored and retrieved
information in other people, cave paintings, writing, built environments, and material
culture (e.g., Renfrew and Scarre 1998; Powell e al. 2009). Arguably, however, as
more and more information is stored, social learning becomes less selective (Bentley
and O’Brien 2011), but at the same time, the searchable Internet allows like minds to
find each other and to create cultural niches that branch off from one another, like
technology itself does (Bentley er al. 2011). Interconnectedness, paradoxically,
allows groups to differentiate by copying each other, which homogenizes the group
but distinguishes it from all other groups. Perhaps, those interested in what Web 2.0
is doing to global society should seek answers from Schiffer and others in the human
sciences who have a deep sense of history and technology.
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